Supporting Information

Constructing Sub-10 nm Scale Interfused TiO_2/SiO_x Bi-Continuous Hybrid with Mutual-Stabilizing Effect for Lithium Storage

Ruohan Yu,^{1, 2‡} Yexin Pan,^{3‡} Yihang Liu,^{1‡} Liang Zhou,^{1,4*} Dongyuan Zhao,¹ Jinsong Wu,^{1, 2*} and Liqiang Mai^{1, 4*}

¹State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China

²Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, P. R. China

³Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, P. R. China

⁴Hubei Longzhong Laboratory. Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, Hubei, China

E-mail: liangzhou@whut.edu.cn; wujs@whut.edu.cn; mlq518@whut.edu.cn.

Figure S1. SEM images of the Ti_3SiC_2 before (a) and after (b) ball milling; bright-field STEM image

of the Ti_3SiC_2 after ball milling (c); XRD patterns of the Ti_3SiC_2 before and after ball milling (d).

Figure S2. A comparison of TG curves of T_3SiC_2 before and after ball-milling.

Figure S3. N₂ adsorption–desorption isotherm of the TiO_2/SiO_x hybrid.

Figure S4. a, Rendered volume using color set "Physics" of TiO_2/SiO_x (left) and TiO_2 only (right) by changing contrast range; **b**, Rendered volume using color set "Temperature" of TiO_2/SiO_x (left) and only TiO_2 (right) by changing contrast range; **c**, **d**, The right view of the reconstructed particle (c) and representative orthoslices (*xy* planes, perpendicular to the *z* axis at 46, 64, 82 and 100 nm), marked by blue dash line in **c**.

Figure S5. XRD patterns of the TiO_2/SiO_x hybrid prepared at different calcination temperatures.

Figure S6. *In-situ* EIS profiles of the TiO_2/SiO_x hybrid electrode before cycling, after 1, 5, 10, 25, and 50 cycles in discharged state.

Figure S7. Cycling performances of the TiO_2/SiO_x hybrids prepared at different calcination temperatures at 1.0 A g⁻¹.

Figure S8. Structural characterization of the anatase TiO_2 nanoparticles. a, HAADF-STEM image and the corresponding BF image; b, HAADF image and the corresponding EDX mapping images; c, magnified HAADF-STEM image and the corresponding BF image.

Figure S9. Structural characterization of the mechanically mixed TiO₂/**Si mixture. a**, HAADF-STEM image and the corresponding BF image; **b**, corresponding EDX images from **a**; **c**, magnified HAADF image and the corresponding BF image; **d**, corresponding EDX mapping color mix image of Si and Ti signals from **c**.

Figure S10. Structural characterization of the mechanically mixed TiO_2/SiO_x mixture. a, HAADF-STEM image and the corresponding BF-STEM image; b, corresponding EDX mapping images from a; c, magnified HAADF-STEM image and corresponding EDX mapping images.

The O signals in (c) overlays the Ti and Si signals, indicating that Si nanoparticles are oxidized at the annealing process (800 °C in air for 2 h).

Figure S11. Electrochemical performances of the contrast samples. a, b, Cycling (at 1.0 A g^{-1}) and rate performances of anatase TiO₂ nanoparticles; c, d, cycling (at 1.0 A g^{-1}) and rate performances of mechanically mixed TiO₂/Si mixture; e, f, cycling (at 1.0 A g^{-1}) and rate performances of mechanically mixed TiO₂/SiO_x mixture.

Figure S12. A comparison of retained capacity of various TiO_2 based anode after cycling at a small current density. The statistical data is from Table S1.

Figure S13. Representative charge–discharge curve (a) and cycling performance (b) of the $TiO_2/SiO_x//LiFePO_4$ full cell at 0.5 C.

Figure S14. Top-view SEM images of the TiO_2/SiO_x hybrid electrode before (**a**) and after (**b**)

cycling.

Figure S15. *Ex-situ* characterization of structural degradation of mechanically mixed TiO_2/SiO_x mixture after 500 cycles at 1.0 A g⁻¹. a, HAADF image and corresponding EDX mapping images of mechanically mixed TiO_2/SiO_x mixture; b, magnified HAADF image and the corresponding BF image; c, corresponding EDX mapping color mix image of Si and Ti signals from c.

It is observed that the SiO_x severely deformed after the cycling process from the Si signal distributions (**a**, **c**) as well as the marked area in *ex-situ* HAADF image (**b**). Also, the TiO₂ exhibits a fracture and pulverization tendency as observed from the marked areas in *ex-situ* BF image (**b**). These results produce a sharp contrast with the sub-10 nm bi-continuously composited TiO₂/SiO_x hybrid.

Materials	Composition ratio(wt.%)	Voltage window	Specific capacity (mAh g ⁻¹)/Current density (A g ⁻¹)/Cycle number	Specific capacity (mAh g ⁻¹)/Current density (A g ⁻¹)/Cycle number	Rate capacity (mAh g ⁻¹) Current density (A g ⁻¹)	Ref.
TiO ₂ @SiO _x hybrid	TiO ₂ :SiO _x ≈82 : 18	0.01-3 V	671/0.1/580	355/1.0/1000	267/5	This work
Anatase TiO ₂ /RGO	TiO ₂ :RGO≈95 : 5	1.0-3.0 V	174/0.17/200	113/1.7/260	88/3.4	[1]
Anatase TiO ₂ /C	TiO ₂ :C≈ 84 : 16	0.01-3.0 V	~180/0.08/100		123/0.8	[2]
Anatase TiO ₂	TiO ₂	0.01-3.0 V	300/0.1/100	242/1.0/1000	220/2.0	[3]
Rutile TiO ₂ /C	TiO ₂ :C≈78 : 21	0-3.0 V	400/0.1/100	140/5.0/10000	172/5	[4]
TiO ₂ (B)/C	TiO ₂ :C≈63 : 37	0.01-3.0 v	560/0.03/100		200/0.75	[5]
TiO ₂ -C/MnO ₂	Mainly TiO ₂	0.01-3 v	352/0.335/100	218/3.35/150	130/10.05	[6]
TiO ₂ /SiO ₂ /C	TiO ₂ :SiO ₂ :C≈ 50:35:15	0.01-3 v	380/0.2/700		116/8	[7]
C/SiO _x /TiO ₂	TiO ₂ :SiO ₂ :C≈ 65:21:14	0.01-3 V	400/0.0668/100 200/		200/1.67	[8]
TiO ₂ /SiO _x /C	TiO ₂ :SiO _x :C≈ 22:40:38	0.005 – 3 V	421/0.067/100			[9]
SiO@TiO2	Mainly SiO	0.1 – 3 V	901/0.2/200		272/3	[10]
TiO ₂ -C-SiO	Mainly SiO	0.005 - 2 V	674.5/0.14/100	400/0.7/450	800/1.4	[11]
TiO ₂ /SiO ₂ -C	TiO ₂ :SiO ₂ :C≈ 45:26:28	0.01 – 3.0 V	502/0.1/300		232/2	[12]
TiO ₂ /SiO _x @C	TiO ₂ :SiO _x :C≈ 62:21:17	0.01 – 3.0 V	586/0.1/100	365/1/500	401/5	[13]

Table S1. Electrochemical performances of various TiO₂-based anodes for LIBs.

References

- Wang, Z.; Sha, J.; Liu, E.; He, C.; Shi, C.; Li, J.; Zhao, N., A large ultrathin anatase TiO₂ nanosheet/reduced graphene oxide composite with enhanced lithium storage capability. *J. Mater. Chem. A* 2014, *2* (23), 8893-8901.
- (2) Zhang, C.; Zhang, Q.; Kang, S.; Li, X., A novel route for the facile synthesis of hierarchically porous TiO₂/graphitic carbon microspheres for lithium ion batteries. *J. Mater. Chem. A* 2014, *2* (8), 2801-2806.
- (3) He, R.; Liu, Z.; He, P.; Luo, W.; Yu, R.; Hong, X.; Pan, X.; Zhou, Q.; Mai, L.; Zhou, L., Constructing three-dimensional macroporous TiO₂ microspheres with enhanced pseudocapacitive lithium storage under deep discharging/charging conditions. ACS Appl. Mater. Interfaces 2021, 13 (14), 16528-16535.
- (4) Wang, P.; Lang, J.; Liu, D.; Yan, X., TiO₂ embedded in carbon submicron-tablets: synthesis from a metal–organic framework precursor and application as a superior anode in lithium-ion batteries. *Chem. Commun.* 2015, *51* (57), 11370-11373.
- (5) Yang, Z.; Du, G.; Guo, Z.; Yu, X.; Chen, Z.; Guo, T.; Liu, H., TiO₂(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance. J. Mater. Chem. 2011, 21 (24), 8591-8596.
- (6) Liao, J.-Y.; Higgins, D.; Lui, G.; Chabot, V.; Xiao, X.; Chen, Z., Multifunctional TiO₂–C/MnO₂ core–double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. *Nano Lett.* **2013**, *13* (11), 5467-5473.
- (7) Jiang, Y.; Chen, S.; Mu, D.; Zhao, Z.; Li, C.; Ding, Z.; Xie, C.; Wu, F., Flexible TiO₂/SiO₂/C film anodes for lithium-ion batteries. *ChemSusChem* **2018**, *11* (13), 2040-2044.
- (8) Yang, Z.; Ding, Y.; Jiang, Y.; Zhang, P.; Jin, H., Hierarchical C/SiO_x/TiO₂ ultrathin nanobelts as anode materials for advanced lithium ion batteries. *Nanotechnology* **2018**, *29* (40), 405602.
- (9) Wang, X.; Xia, Y.; Zuo, X.; Schaper, S. J.; Yin, S.; Ji, Q.; Liang, S.; Yang, Z.; Xia, S.; Xiao, Y., Synergistic effects from super-small sized TiO₂ and SiO_x nanoparticles within TiO₂/SiO_x/carbon nanohybrid lithium-ion battery anode. *Ceram. Int.* **2019**, *45* (11), 14327-14337.
- (10) Xu, D.; Chen, W.; Luo, Y.; Wei, H.; Yang, C.; Cai, X.; Fang, Y.; Yu, X., Amorphous TiO₂ layer on silicon monoxide nanoparticles as stable and scalable core-shell anode materials for high performance lithium ion batteries. *Appl. Surf. Sci.* **2019**, *479*, 980-988.
- (11) Dou, F.; Shi, L.; Song, P.; Chen, G.; An, J.; Liu, H.; Zhang, D., Design of orderly carbon coatings for SiO anodes promoted by TiO₂ toward high performance lithium-ion battery. *Chem. Eng. J.* 2018, *338*, 488-495.
- (12) Liu, H.; Wolf, M.; Karki, K.; Yu, Y.-S.; Stach, E. A.; Cabana, J.; Chapman, K. W.; Chupas, P. J., Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. *Nano Lett.* 2017, *17* (6), 3452-3457.
- (13) Shi, W.; Meng, J.; Li, Q.; Xiao, Z.; Xu, X.; Qin, M.; Zhang, X.; Mai, L., Ternary TiO₂/SiO_x@ C nanocomposite derived from a novel titanium–silicon MOF for high-capacity and stable lithium storage. *Chem. Commun.* **2020**, *56* (18), 2751-2754.