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Figure S1. Calculated adsorption models of the *OCHO intermediate for different defect Bi models. 

 

 

  



 

Figure S2. XRD pattern of the Bi2S3 (BS) nanowires. 
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Figure S3. High-resolution transmission electron microscopy (HRTEM) of the BS nanowires. 

 

 

  



 
 

Figure S4. High-angle annular dark-field scanning transmission electron microscopy (HAADF-

STEM) image and Energy Dispersive X‐ray spectroscopy (EDX) mapping of the BS nanowires. 

 

  



 

Figure S5. XRD pattern of the sputtered Bi (Bi-SC). 
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Figure S6. SEM images and Energy Dispersive Spectrum (EDS) of Bi-SC. 

 

  



 

Figure S7. SEM image and corresponding EDS mapping and point signals. 

 

 

  



 

Figure S8. (a) LSV curves of the BS and Bi-SC in 0.5 M KHCO3 electrolyte. (b) Partial current 

density of HCOO– under different applied potentials for the BS and Bi-SC. The error bars represent 

the standard deviation of three measurements. 

 

  



 

Figure S9. NMR spectrum of the liquid product in H-cell test. 
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Figure S10. XRD patterns of the BS and BS/VC after the CO2RR test. 
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Figure S11. HAADF-STEM image of the BS after the chronoamperometry test. 

 

 

  



 

Figure S12. HAADF-STEM images of the BS after the chronoamperometry test. 

 

  



 

Figure S13. (a) AFM images and (b) corresponding height curves of reconstructed Bi nanosheets. 

The scanning path for the height analysis is indicated by the white arrow line in (a). 

 

 

  



 

Figure S14. SEM image (a) and HAADF-STEM image (b) of the Bi-SC after the chronoamperometry 

test. 

 

  



 
Figure S15. Mass spectrum of BS nanowires at –1.2 V. 

 

  



 

Figure S16. Optical microscope images of the BS nanowires under the open circuit potential (a), 

applied potential of –1.2 V (b), and removing the bias (c, d). 

 

 

  



 
Figure S17. Chronoamperometry test of the BS at –1.1 V in 0.5 M KHCO3. 
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Figure S18. The faradaic efficiency (FE) of HCOO– (a) and H2, CO (b) at different applied potentials 

for the BS-derived Bi and BS/VC-derived Bi/VC after exposing in air for 1 h. 

 

  



 

Figure S19. SEM image of the BS/VC. 

 

  



 

Figure S20. HAADF-STEM image of BS/VC with different VC concentration. (a) 0.25 M, (b) 1 M, 

(c) 2 M. 

  



 

Figure S21. High-resolution O 1s spectra for the BS/VC and BS. 
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Figure S22. Optical photograph for alkaline flow cell electrolyzer. 

  



 

Figure S23. NMR spectrum of the liquid product in alkaline flow-cell system test. 
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Figure S24. Single pass CO2 utilization efficiency of BS and BS/VC in alkaline flow-cell system. 
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Figure S25. SEM images of the (a) BS-derived Bi and (b) BS/VC-derived Bi/VC on carbon paper 

after 24 hours electrolysis in 0.5 M KHCO3 at 30 mA cm–2. SEM images of the (c) BS-derived Bi 

and (d) BS/VC-derived Bi/VC on gas diffusion electrode after 24 hours electrolysis in 1 M KOH at 

200 mA cm–2. 

 

  



 
Figure S26. EDS mapping of Bi and C element in the BS/VC-derived Bi/VC nanowires. 

 

  



 

Figure S27. High pass filtered HAADF-STEM image of the BS/VC-derived Bi/VC nanowire. 

 

 

  



 

Figure S28. The CV curves with different scan rate under the potential of 0.75 V – 0.85 V of BS, 

BS/VC, BS-after, and BS/VC-after. To avoid the affect of porous electrode (gas diffusion electrode) 

and electrolyte flow, we conducted the electrochemical surface area (ECSA) test by dropping the 

catalysts ink on Indium Tin Oxide (ITO) coated glass and run the CV in 1 M KOH without flow. 

 

 

  



 

Figure S29. Δj at 0.8 V vs. RHE as a function of the scan rate to evaluate Cdl. 
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Figure S30. Optical photograph for in-situ XAFS measurements. 

 

 

  



 
Figure S31. HAADF-STEM image (a) and line scan intensity signal (b) of BS/VC. 

 

  



 

Figure S32. Wavelet transform images for the Bi L3-edge signals for the BS and BS/VC at –1.4 V. 

Bulk Bi foil and Bi2O3 are listed as references. 

 

  



 

Figure S33. Schematic and optical photographs of in-situ attenuated total reflection surface enhanced 

infrared adsorption spectroscopy (ATR-SEIRAS). 

  



 

Figure S34. Tafel slope of BS and BS/VC. 
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Figure S35. (a) The structure formula of 4-Nitrothiophenol. (b) FT-IR analysis of BS/Ⅰ, and Ⅰ. Ⅰ 

represent the 4-Nitrothiophenol. (c) The LSV curve of BS/Ⅰ in flow-cell system with 1 M KOH 

electrolyte. (d) The selectivity of HCOO–, H2, and CO under different applied potential.  

  



 

Figure S36. (a) The structure formula of 5,6-Dimethylbenzimidazole. (b) FT-IR analysis of BS/Ⅱ, 

and Ⅱ. Ⅱ represent the 5,6-Dimethylbenzimidazole. (c) The LSV curve of BS/Ⅱ in flow-cell system 

with 1 M KOH electrolyte. (d) The selectivity of HCOO–, H2, and CO under different applied potential. 

 

  



 
Figure S37. (a) The structure formula of 9-Anthracenecarboxylic acid. (b) FT-IR analysis of BS/Ⅲ, 

and Ⅲ. Ⅲ represent the 9-Anthracenecarboxylic acid. (c) The LSV curve of BS/Ⅲ in flow-cell 

system with 1 M KOH electrolyte. (d) The selectivity of HCOO–, H2, and CO under different applied 

potential. 

 

  



 
Figure S38. (a) The structure formula of 1-Dodecanethiol. (b) FT-IR analysis of BS/Ⅳ, and Ⅳ. Ⅳ 

represent the 1-Dodecanethiol. (c) The LSV curve of BS/Ⅳ in flow-cell system with 1 M KOH 

electrolyte. (d) The selectivity of HCOO–, H2, and CO under different applied potential. 

 

  



 

Figure S39. (a) SEM image of In/VC catalyst. In electrode was synthesized by sputtering metal In 

target on the gas diffusion electrode using a magnetron sputtering machine. The sputtering process 

was carried out at a power of 1 W for 10 min. In/VC was obtained by spraying VC dispersion solution 

on In electrode and dried in vacuum oven for 10 hours. (b) EDS mapping of In and O elements in 

In/VC electrode. (c) The LSV curves of In and In/VC electrode in alkaline flow-cell system with 1 

M KOH. (d) The corresponding products of In and In/VC. 

 

  



 
Figure S40. (a) SEM image of Sn/VC catalyst. Sn electrode was synthesized by sputtering metal Sn 

target on the gas diffusion electrode using a magnetron sputtering machine. The sputtering process 

was carried out at a power of 1 W for 10 min. Sn/VC was obtained by spraying VC dispersion solution 

on Sn electrode and dried in vacuum oven for 10 hours. (b) EDS mapping of Sn and O elements in 

Sn/VC electrode. (c) The LSV curves of Sn and Sn/VC electrode in alkaline flow-cell system with 1 

M KOH. (d) The corresponding products of In and Sn/VC. 

 

  



 

Figure S41. The total cell voltage and energy efficiency of formic acid as a function of current density.  
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Figure S42. Long-term production of pure formic acid from the BS/VC at current densities of 200 

mA cm–2, in the all-solid-state reactor. 
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Table S1. Comparison of the potential range with Bi-based electrocatalysts recently reported – a high 

formate selectivity and the highest partial current density of formate for the BS/VC developed in this 

study. 

 

Catalysts Electrolytes 

Potential range with 

formate selectivity 

over 90% 

Highest partial 

current density of 

formate (mA cm−2) 

FE (%) Reference 

BS/VC 1 M KOH 1.2 V –910 94% This work 

2D-Bi34 2 M KOH 70 mV –215 86% 

Nature Energy, 

2019, 4(9): 776-

785 

Defective Bi 

nanotubes18 
1 M KOH —— –206 98% 

Nat. Commun., 

2019, 10, 2807-

2816 

Bi NSs33 1 M KOH 200 mV –360 89 

Advanced Energy 

Materials, 2020, 

10(36): 2001709 

Bismuthene 

nanosheets35 
1 M KHCO3 750 mV –273 86% 

Advanced 

Functional 

Materials, 2021, 

31(4): 2006704 

Bi2O3@C-80036 1 M KOH 700 mV –208 92% 

Angewandte 

Chemie, 2020, 

132(27): 10899-

10905 

Bi2S3 

nanoplatelets37 
1 M KOH 80 mV –211 100% 

Journal of 

Materials 

Chemistry A, 

2020, 8(25): 

12385-12390 

Bi RDs22 1 M KOH 360 mV –289 94% 

Advanced 

Materials, 2021, 

33(31): 2008373 

SnO2-Bi2O3/C 

HNFs38 
1 M KOH —— –281 74% 

Chemical 

Engineering 

Journal, 2021, 426: 

131867 

Bi-ene-NW11 1 M KOH 400 mV –515 92% 

Energy & 

Environmental 

Science, 2021, 

14(9): 4998-5008 

BOC@GDY39 1 M KOH 450 mV –200 93.5% 

Science Bulletin, 

2021, 66(15): 

1533-1541 

Bi LNSs12 1 M KOH 660 mV –165 89% 
Small, 2021, 

17(29): 2100602 

Bi nanoribbons40 1 M KOH 550 mV –193 95% 

ACS Energy 

Letters, 2022, 7(4): 

1454-1461 

Bi nanobelts41 1 M KOH 900 mV –331 96% 

Advanced 

Functional 
Materials, 2022: 

2201125 



Defect Bi42 1 M KOH 400 mV –151 85% 

Chemical 

Communications, 

2022, 58(22): 

3621-3624 
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