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4.3. Material characterization

X-ray diffraction (XRD) measurement was measured using a Bruker D8 Discover
X-ray diffractometer with the non-monochromatic Cu Ko X-ray as the source (A =
1.5406 A). Inductively coupled plasma (ICP) measurement was recorded with a
PerkinElmer Optima 4300DV spectrometer. Raman spectra were obtained using a
HORIBA LabRAM HR Evolution micro-Raman spectroscopy system with an
excitation laser wavelength of A = 532 nm. Thermogravimetric analysis (TGA) curves
were conducted by using a Netzsch STA 449C simultaneous analyzer. Fourier transform
infrared (FTIR) spectra were performed using a Nicolet 6700 (Thermo Fisher Scientific
Co., USA) IR spectrometer. The Brunauer-Emmett-Teller (BET) surface arca was
collected through Tristar II 3020 instrument at 77 K. Scanning electron microscopy
(SEM) images were carried out on a JEOL-7100F scanning electron microscope.
Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images
were obtained with a JEM-2100F STEM/EDS microscope. X-ray photoelectron

spectroscopy (XPS) spectra were conducted with a VG Multi Lab 2000 instrument.
4.4, Computation methods

All DFT calculations were carried out by the CASTEP module in the Materials
Studio. The cut-off energy for the plane-wave expansion was set as 550 eV, the /-
centered k-mesh was adopted as 3x3X3 for the geometry optimization of all structures.
The criteria of convergence for max force, stress, and displacement were 0.02 eV/A,
0.03 GPa, and 0.001 A, individually. The Perdew-Burke-Ernzerh of generalized
gradient approximation (GGA) was performed,!!! and the ultrasoft pseudopotential for
every atom was adopted.

The original V,0s structure is constructed from the crystalline structure database
and experimental results. To explain the migration behavior of the Zn>" ions in the
anode, we calculate the migration barrier when the Zn?' ions transfer at the bulk
structure of AVO with different ratios of doped AI**. The complete linear synchronous
transit (LST) and quadratic synchronous transit (QST) methods®->) were employed to
search the transition state (TS), where the cut-off energy, SCF convergence, max force,
stress, displacement are set as 550 eV, 2.0x107 eV/atom, 0.02 eV/A, 0.1 GPa, and
0.002 A, individually.



Sample Mass ratio (Al:V) Al atomic number/per cell

1 0.1670 10.1
2 0.1818 11.0
3 0.1867 11.3
4 0.2078 125

Table S1. ICP measurement results and Al atomic number of HAVOs.
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Figure S1. Raman spectra of HAVOs.
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Figure S2. The partially fitted Raman spectrum from 620 to 760 cm™ of HAVO-11.0.
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Figure S3. TGA curves of HAVOs.
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Figure S4. N, adsorption-desorption isotherm curves of HAVOs.
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Figure S5. Pore diameter distribution curves of HAVOs.



Figure S6. Typical SEM images of HAVO-10.1 (a, b), HAVO-11.0 (c, d), HAVO-11.3
(e, f) and HAVO-12.5 (g, h).



O 1s

V 2s viep
—~ HAVO-12.5 C1s Al 2p
c?‘_ A A—-—M_M
= HAVO-11.3
(- A ‘
% 1\{ HAVO-11.0

HAVO-10.1

K{ -

660 | 460 200 0
Binding Energy (eV)

Figure S7. Full survey XPS spectra of HAVOs.
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Figure S8. High-resolution V 2p XPS spectra of HAVOs.
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Figure S9. High-resolution O 1s XPS spectra of HAVOs.
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Figure S10. Representative charge/discharge curves of HAVO-11.0 at 300 mA g™’
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Figure S11. Representative charge/discharge curves of HAVO-11.0 at 1000 mA g™’
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Figure S12. Cycling performances tested of HAVOs at 3000 mA g™
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Figure S13. Representative charge/discharge curves of HAVO-11.0 at 3000 mA g™
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Figure S14. Representative charge/discharge curves of HAVO-11.0 at 5000 mA g™’
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Figure S15. (a) CV curves of HAVO-10.1 at different scan rates. (b) The plots of log
(peak current) versus log (sweep rate) at each peak from CV curves of HAVO-10.1.
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Figure S16. (a) CV curves of HAVO-11.3 at different scan rates. (b) The plots of log
(peak current) versus log (sweep rate) at each peak from CV curves of HAVO-11.3.
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Figure S17. (a) CV curves of HAVO-12.5 at different scan rates. (b) The plots of log
(peak current) versus log (sweep rate) at each peak from CV curves of HAVO-12.5.
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Figure S18. In-situ impedance spectra of HAVO-11.0 cathode at 100 mA g™ during the
first discharge process.
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Figure S19. In-situ impedance spectra of HAVO-11.0 cathode at 100 mA g™ during the
first charge process.
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Figure S20. Ex-situ XPS spectra of Zn 2p of HAVO-11.0 electrode.
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Figure S21. (a) GITT curves and (b) Diffusivity versus state of discharge of HAVO-
11.0.
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