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4.3. Material characterization 

X-ray diffraction (XRD) measurement was measured using a Bruker D8 Discover 

X-ray diffractometer with the non-monochromatic Cu Kα X-ray as the source (λ = 

1.5406 Å). Inductively coupled plasma (ICP) measurement was recorded with a 

PerkinElmer Optima 4300DV spectrometer. Raman spectra were obtained using a 

HORIBA LabRAM HR Evolution micro-Raman spectroscopy system with an 

excitation laser wavelength of λ = 532 nm. Thermogravimetric analysis (TGA) curves 

were conducted by using a Netzsch STA 449C simultaneous analyzer. Fourier transform 

infrared (FTIR) spectra were performed using a Nicolet 6700 (Thermo Fisher Scientific 

Co., USA) IR spectrometer. The Brunauer-Emmett-Teller (BET) surface area was 

collected through Tristar II 3020 instrument at 77 K. Scanning electron microscopy 

(SEM) images were carried out on a JEOL-7100F scanning electron microscope. 

Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images 

were obtained with a JEM-2100F STEM/EDS microscope. X-ray photoelectron 

spectroscopy (XPS) spectra were conducted with a VG Multi Lab 2000 instrument.  

4.4. Computation methods 

All DFT calculations were carried out by the CASTEP module in the Materials 

Studio. The cut-off energy for the plane-wave expansion was set as 550 eV, the Γ-

centered k-mesh was adopted as 3×3×3 for the geometry optimization of all structures. 

The criteria of convergence for max force, stress, and displacement were 0.02 eV/A, 

0.03 GPa, and 0.001 Å, individually. The Perdew-Burke-Ernzerh of generalized 

gradient approximation (GGA) was performed,[1] and the ultrasoft pseudopotential for 

every atom was adopted.[2] 

The original V2O5 structure is constructed from the crystalline structure database 

and experimental results. To explain the migration behavior of the Zn2+ ions in the 

anode, we calculate the migration barrier when the Zn2+ ions transfer at the bulk 

structure of AVO with different ratios of doped Al3+. The complete linear synchronous 

transit (LST) and quadratic synchronous transit (QST) methods[3-5] were employed to 

search the transition state (TS), where the cut-off energy, SCF convergence, max force, 

stress, displacement are set as 550 eV, 2.0×10−5 eV/atom, 0.02 eV/Å, 0.1 GPa, and 

0.002 Å, individually.  
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Sample Mass ratio (Al:V) Al atomic number/per cell 

1 0.1670 10.1 

2 0.1818 11.0 

3 0.1867 11.3 

4 0.2078 12.5 

 

Table S1. ICP measurement results and Al atomic number of HAVOs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

200 400 600 800 1000

In
te

n
s
it
y
 (

a
.u

.)

Raman Shift (cm-1)

HAVO-12.5

HAVO-11.3

HAVO-11.0

HAVO-10.1

 
Figure S1. Raman spectra of HAVOs. 
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Figure S2. The partially fitted Raman spectrum from 620 to 760 cm-1 of HAVO-11.0. 
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Figure S3. TGA curves of HAVOs. 
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Figure S4. N2 adsorption-desorption isotherm curves of HAVOs. 
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Figure S5. Pore diameter distribution curves of HAVOs. 
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Figure S6. Typical SEM images of HAVO-10.1 (a, b), HAVO-11.0 (c, d), HAVO-11.3 

(e, f) and HAVO-12.5 (g, h). 
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Figure S7. Full survey XPS spectra of HAVOs. 
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Figure S8. High-resolution V 2p XPS spectra of HAVOs. 
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Figure S9. High-resolution O 1s XPS spectra of HAVOs. 
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Figure S10. Representative charge/discharge curves of HAVO-11.0 at 300 mA g-1. 
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Figure S11. Representative charge/discharge curves of HAVO-11.0 at 1000 mA g-1. 
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Figure S12. Cycling performances tested of HAVOs at 3000 mA g-1. 
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Figure S13. Representative charge/discharge curves of HAVO-11.0 at 3000 mA g-1. 
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Figure S14. Representative charge/discharge curves of HAVO-11.0 at 5000 mA g-1. 
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Figure S15. (a) CV curves of HAVO-10.1 at different scan rates. (b) The plots of log 

(peak current) versus log (sweep rate) at each peak from CV curves of HAVO-10.1.  
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Figure S16. (a) CV curves of HAVO-11.3 at different scan rates. (b) The plots of log 

(peak current) versus log (sweep rate) at each peak from CV curves of HAVO-11.3.  
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Figure S17. (a) CV curves of HAVO-12.5 at different scan rates. (b) The plots of log 

(peak current) versus log (sweep rate) at each peak from CV curves of HAVO-12.5.  
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Figure S18. In-situ impedance spectra of HAVO-11.0 cathode at 100 mA g-1 during the 

first discharge process. 
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Figure S19. In-situ impedance spectra of HAVO-11.0 cathode at 100 mA g-1 during the 

first charge process. 
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Figure S20. Ex-situ XPS spectra of Zn 2p of HAVO-11.0 electrode. 
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Figure S21. (a) GITT curves and (b) Diffusivity versus state of discharge of HAVO-

11.0. 
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