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Experimental Section

Materials characterization

TiS, powder was purchased from Nanjing MKNANO Tech. Co., Ltd.. MCMB powder was
purchased from SZKEJING. The crystal structure of TiS, was characterized via XRD (D-
MAX/2000-PC, Rigaku), and HRTEM (HR-TEM, JEM-ARM200F/JEOL, operating at 200
kV) combined with EDX (system attached to the HR-TEM instrument). Morphology was
analyzed by SEM (JSM-6500, JEOL, acceleration voltage: 20 kV).

Electrochemical characterization

The working electrode was prepared by casting slurry containing TiS, (70 wt%), acetylene
black (20 wt%), and PVDF binder (10 wt%) of onto aluminum (Al) foil. The loading content
of the anode materials on Al foil was about 1.0 mg cm2 K metal was used as the counter
electrode for half cells. The glass fiber (GF/D) was elected as separator. 1.0 M solution
consist of KPFg in a 4/3/2 (v/iviv) mixture of ethylene carbonate (EC), dimethyl carbonate
(DMC), and ethyl methyl carbonate (EMC) was used as the electrolyte. The full-cells were
assembled with MCMB cathode and TiS; anode. To prepare the cathodes, MCMB, acetylene
black, and PVDF binder were mixed with a weight ratio of 8:1:1. For the full cells, the mass
ratio of MCMB cathode to TiS; anode was fixed at 4:1. The CV test was carried out using a
ZIVE-MP2A. The galvanostatic discharge/charge test was conducted on LAND CT2001A.
The GITT data were collected by applying a current of 20 mA g* for 3 minutes, followed by
1 hour of rest.

Calculation method

Materials Studio 2020 CASTAP module was used for density functional theory
calculations.™™! The intercalation energy of K* at different concentration (K,TiS,, n = 0.125,
0.25, 0.375, 0.5, 0.625, 0.75, 0.875) and corresponding variation of layer spacing were
evaluated. In addition, some electronic structures and the migration path of K between the
interlayers of TiS, were also simulated.[ The generalized gradient approximation (GGA) and
the Perdew—Burke—Ernzerhof (PBE) exchange—correlation function were used.®) The

calculations were performed with fine quality, and the dispersion force was corrected by
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Grimme method.™ In detail, the electronic self-consistent field (SCF) tolerance was 1 x 107
eV/atom, while the force tolerance in geometry optimization was 0.03 eV/A, and the plane
wave basis energy cutoff was set as 435.4 eV. The insertion energies were calculated with a
supercell, K\TigSis (n=1, 2, 3, 4, 5, 6, 7), and the insertion energy and average insertion
energy were calculated by following equations, respectively.
E = E(K,TigS16) — E(Ky_1TigSis) — E(K)
_ E(KnTigS16) — E(TigSs6)

avg

n
In above equations, E (x) represents the energy of the structure, x, and E (K) is the normalized

energy of bulk K metal.

Figure S1. SEM image of TiS,.
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Figure S2. (a-b) HRTEM image and (c) the corresponding SAED pattern of TiS,. (d-f) The

corresponding elemental mapping images of S and Ti.
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Figure S3. XPS spectra (a) Ti 2p and (b) S 2p of TiS,.
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Figure S4. GCD curves of TiS; anode in half cells at different current densities.
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Figure S5. Rate capability of TiSe, anode.
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Figure S6. GCD Profiles of the TiS,-K battery at different cycles at 1000 mA g .
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Figure S7. Cycle performance comparison with previous literature.
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Figure S8. Long-term cycle performance at 1000 mA g * of TiSe;, anode.

Figure S9. (a) HRTEM image and (b) the corresponding SAED pattern of TiS; at potassiation

state. (c-f) The corresponding elemental mapping images of Ti, S, and K.
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Figure S10. The crystal structure of (a) TiS, (b) Ko.125TiS2, (€) Ko2sTiSz, (d) KorsTiS,, and

(e) K0.875Ti82.
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Figure S11. The calculated layer spacing variation function of K content.
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Figure S12. GITT voltage profiles and diffusion coefficients versus state of charge and

discharge of TiSe, anode.
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Figure S13. Nyquist plots of TiS; before and after cycling.
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Figure S14. The proposed K* (a) diffusion path and (b) energy barriers in KosTiS..

Figure S15. The local charge density difference isosurface.
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Figure S16. (a) The XRD pattern and (b) SEM image of MCMB powder.
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Figure S17. The GCD curves of TiS, anode in full cells at different current densities.
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Table S1. Diffusion barriers comparison with previous literature.

Materials Diffusion barriers (eV) Ref.
Defect-rich TiS; 2.446 [5]

VS, nanosheets 0.51 [6]
CoV,04

nanosphere@graphene 0.5 [7]

oxide (GO)

Sn 0.6 [8]
Dipotassium terephthalate 0.46 -

(K2TP)

Ko2sTiSs 0.27 This work
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