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Experimental Section 

Materials characterization 

TiS2 powder was purchased from Nanjing MKNANO Tech. Co., Ltd.. MCMB powder was 

purchased from SZKEJING. The crystal structure of TiS2 was characterized via XRD (D-

MAX/2000-PC, Rigaku), and HRTEM (HR-TEM, JEM-ARM200F/JEOL, operating at 200 

kV) combined with EDX (system attached to the HR-TEM instrument). Morphology was 

analyzed by SEM (JSM-6500, JEOL, acceleration voltage: 20 kV). 

Electrochemical characterization 

The working electrode was prepared by casting slurry containing TiS2 (70 wt%), acetylene 

black (20 wt%), and PVDF binder (10 wt%) of onto aluminum (Al) foil. The loading content 

of the anode materials on Al foil was about 1.0 mg cm
−2

. K metal was used as the counter 

electrode for half cells. The glass fiber (GF/D) was elected as separator. 1.0 M solution 

consist of KPF6 in a 4/3/2 (v/v/v) mixture of ethylene carbonate (EC), dimethyl carbonate 

(DMC), and ethyl methyl carbonate (EMC) was used as the electrolyte. The full-cells were 

assembled with MCMB cathode and TiS2 anode. To prepare the cathodes, MCMB, acetylene 

black, and PVDF binder were mixed with a weight ratio of 8:1:1. For the full cells, the mass 

ratio of MCMB cathode to TiS2 anode was fixed at 4:1. The CV test was carried out using a 

ZIVE-MP2A. The galvanostatic discharge/charge test was conducted on LAND CT2001A. 

The GITT data were collected by applying a current of 20 mA g
−1

 for 3 minutes, followed by 

1 hour of rest. 

Calculation method 

Materials Studio 2020 CASTAP module was used for density functional theory 

calculations.
[1]

 The intercalation energy of K
+
 at different concentration (KnTiS2, n = 0.125, 

0.25, 0.375, 0.5, 0.625, 0.75, 0.875) and corresponding variation of layer spacing were 

evaluated. In addition, some electronic structures and the migration path of K between the 

interlayers of TiS2 were also simulated.
[2]

 The generalized gradient approximation (GGA) and 

the Perdew−Burke−Ernzerhof (PBE) exchange−correlation function were used.
[3]

 The 

calculations were performed with fine quality, and the dispersion force was corrected by 
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Grimme method.
[4]

 In detail, the electronic self-consistent field (SCF) tolerance was 1 × 10
-6

 

eV/atom, while the force tolerance in geometry optimization was 0.03 eV/Å, and the plane 

wave basis energy cutoff was set as 435.4 eV. The insertion energies were calculated with a 

supercell, KnTi8S16 (n=1, 2, 3, 4, 5, 6, 7), and the insertion energy and average insertion 

energy were calculated by following equations, respectively. 

                                  

      
                     

 
 

In above equations,      represents the energy of the structure,  , and      is the normalized 

energy of bulk K metal. 

 

 

Figure S1. SEM image of TiS2. 
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Figure S2. (a-b) HRTEM image and (c) the corresponding SAED pattern of TiS2. (d-f) The 

corresponding elemental mapping images of S and Ti. 

 

 

Figure S3. XPS spectra (a) Ti 2p and (b) S 2p of TiS2. 
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Figure S4. GCD curves of TiS2 anode in half cells at different current densities. 

 

 

Figure S5. Rate capability of TiSe2 anode. 
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Figure S6. GCD Profiles of the TiS2-K battery at different cycles at 1000 mA g
−1

. 

 

 

Figure S7. Cycle performance comparison with previous literature. 
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Figure S8. Long-term cycle performance at 1000 mA g
−1

 of TiSe2 anode. 

 

Figure S9. (a) HRTEM image and (b) the corresponding SAED pattern of TiS2 at potassiation 

state. (c-f) The corresponding elemental mapping images of Ti, S, and K. 
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Figure S10. The crystal structure of (a) TiS2, (b) K0.125TiS2, (c) K0.25TiS2, (d) K0.75TiS2, and 

(e) K0.875TiS2. 

 

 

Figure S11. The calculated layer spacing variation function of K content. 
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Figure S12. GITT voltage profiles and diffusion coefficients versus state of charge and 

discharge of TiSe2 anode. 

 

Figure S13. Nyquist plots of TiS2 before and after cycling. 
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Figure S14. The proposed K
+
 (a) diffusion path and (b) energy barriers in K0.5TiS2. 

 

Figure S15. The local charge density difference isosurface. 

 

 

Figure S16. (a) The XRD pattern and (b) SEM image of MCMB powder. 
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Figure S17. The GCD curves of TiS2 anode in full cells at different current densities. 
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Table S1. Diffusion barriers comparison with previous literature. 

Materials Diffusion barriers (eV) Ref. 

Defect-rich TiS2 2.446 [5]
 

VS2 nanosheets 0.51 [6]
 

CoV2O6 

nanosphere@graphene 

oxide (GO) 

0.5 [7]
 

Sn 0.6 [8]
 

Dipotassium terephthalate 

(K2TP) 
0.46 [9]

 

K0.25TiS2 0.27 This work 
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