Cell Reports Physical Science, Volume 1

Supplemental Information

Complete Reconstruction of Hydrate Pre-Catalysts

for Ultrastable Water Electrolysis

in Industrial-Concentration Alkali Media

Xiong Liu, Jiashen Meng, Kun Ni, Ruiting Guo, Fanjie Xia, Jingjing Xie, Xu Li, Bo Wen, Peijie Wu, Ming Li, Jinsong Wu, Xiaojun Wu, Liqiang Mai, and Dongyuan Zhao

Figure S1. (A) Optical photo of 500 mL Teflon-lined autoclave for mass production. (B, C) Optical photo of four pieces of nickel foams for one-pot synthesis. (D) Optical photo of four pieces of NiMoO₄·xH₂O NWs/NF after one-time synthesis.

Figure S2. (A) SEM image of NiMoO₄·xH₂O NWs/NF. (B) TEM image of a single NiMoO₄·xH₂O nanowire. The inset in (B) is the corresponding SAED pattern. (C) XRD pattern of NiMoO₄·xH₂O nanowires and the simulated XRD based on the optimized NiMoO₄·0.75H₂O crystal structure. (D, E) Crystal structures of NiMoO₄·0.75H₂O, containing MoO₄ tetrahedra, NiO₆ octahedra, lattice water (LW) and coordination water (CW).

As a result, the simulated crystal structure of NiMoO4·xH2O shows a triclinic cell with

parameters of a=6.82 Å, b=6.91 Å, c=9.34 Å, α =76.19°, β =83.85°, γ =74.04°. This hydrate consists of MoO₄ tetrahedra, NiO₆ octahedra, coordination water which shares the O atom with NiO₆ as well as lattice water which has no direct connection to other atoms. The z-shaped [NiO₆]₄ units, which consist of four edge-shared NiO₆ octahedra, are linked with MoO₄ tetrahedra to form the three-dimensional network. Based on the optimized crystal structure, the calculated XRD pattern matches well with that of the as-prepared NiMoO₄·xH₂O powder, which demonstrates the rationality of NiMoO₄·0.75H₂O.

Figure S3. (A) TG curve of the NiMoO₄·xH₂O powder and its transformation to NiMoO₄. (B) Ex situ XRD patterns of NiMoO₄·xH₂O calcined at different temperatures, showing that the NiMoO₄·xH₂O can transform to NiMoO₄ when the calcined temperature is higher than 400°C. Figure S3A depicts thermogravimetric analysis curve of NiMoO₄·xH₂O powder and corresponding structural transformation from NiMoO₄·xH₂O to NiMoO₄. The dehydration trend displays three stages including the loss of absorbed water, the gradual release of lattice water (LW) and the abrupt exclusion of coordination water (CW), which is consistent with the dehydration of CoMoO₄·0.75H₂O. The mass loss of 5.64 wt.% indicates 1 mol NiMoO₄·xH₂O contains approximately 0.75 mol crystal water molecules, which supports the formula of the calculated one.

Figure S4. (A-C) SEM images, and (D) SAED pattern of CR-NiOOH. (E) Raman spectra of NiMoO₄·xH₂O and its derived CR-NiOOH. (F) HAADF STEM image and corresponding elemental mappings of a single CR-NiOOH nanowire.

Figure S5. (A) TEM, (B) HRTEM images, and (C) SAED pattern of core-shell NiMoO₄@NiOOH derived from NiMoO₄ nanowires. (D) Raman spectra of NiMoO₄ and its derived NiMoO₄@NiOOH.

Figure S6. Relationship between the current densities of redox peaks and CV cycles.

Figure S7. Characterizations on the intermediate product after first-CV cycle to 1.23 V_{RHE} based on NiMoO₄·xH₂O nanowires (also see in Figure 3D). (A, B) TEM and HRTEM images. The inset in (B) is corresponding FFT image. (C) HAADF STEM image and corresponding elemental mappings. (D) Mo/Ni molar ratios in the dotted-box areas in (C).

Mo/Ni molar ratio from EDX results on the surface region is 0.66 and lower than that of the core region (0.97), indicating the dissolution of Mo-species.

Figure S8. Characterizations on the intermediate product after first-cycle CV to 1.60 V_{RHE} based on NiMoO₄·xH₂O (also see in Figure 3E). (A) HRTEM image. (B) The corresponding FFT image showing two sets of diffraction. (C) SAED pattern. (D) HAADF STEM image and the

corresponding elemental mappings of the intermediate product after first-CV cycle to $1.60 V_{RHE}$. (E) EDX spectra in the five dotted-box areas in (D) and (F) the corresponding Mo/Ni molar ratios, showing the Mo is gradually distributed.

Two sets of diffraction patterns from the corresponding FFT image indicate the existence of second phase. However, only a set of diffraction pattern is visible in the SAED pattern, which may due to the thin-layer NiOOH.

Figure S9. (A, B) SEM images of carbon cloth after long-term CV measurement in 1 M KOH with adding trace of Ni^{2+} salt. (C) The recorded CV curves.

The carbon cloth shows almost no OER activity during CV cycles, indicating that the Ni-species would not deposit on the carbon cloth during such testing condition.

Figure S10. Characterizations on the intermediate product after first-cycle CV based on NiMoO₄·xH₂O nanowire (also see in Figure 3F). (A) TEM and (B) HRTEM images. (B1, B2) The corresponding FFT images from (B). (C) SAED pattern and (D) the line-scan profiles across an individual nanowire. (E) HAADF STEM image and corresponding elemental mappings. Two sets of diffraction patterns are visible in SAED, in which the spots are indexed to NiMoO₄·xH₂O and the polycrystalline rings represent NiOOH. From linear scan analysis along the radial direction of the nanowire, the Ni and O elements exist the whole nanowire but the Mo mainly distribute in the middle of nanowire.

Figure S11. (A) Ex situ XRD patterns of NiMoO₄·xH₂O NWs/NF after different CV cycles at 50 mV s⁻¹. (B) Schematic illustration of the Raman-electrochemistry coupling system for in situ Raman measurements.

Figure S12. (A) Mo/Ni molar ratios of NiMoO₄·xH₂O after different CV cycles at 0-0.8 V_{Hg/HgO}. (B) High-resolution XPS of Mo 3d for NiMoO₄·xH₂O initially, after 1-cycle, and 30-cycle CV measurements. (C) ICP results, showing the Mo/K molar ratios in 1 M KOH after different CV cycles tested at 50 mV s⁻¹ in 0-0.8 V_{Hg/HgO} based on NiMoO₄·xH₂O array electrode. (D) TEM images of (inset) initial NiMoO₄·xH₂O nanowire and etched Ni(OH)₂ nanowire with nanosheet-assembled structure.

Figure S13. (A) SEM image of Fe-doped CoMoO₄·0.75H₂O and (B) TEM image of its product after alkali etching.

Figure S14. (A) TEM and (B) HRTEM images of CR-NiOOH*. (C) HRTEM image and (D) SAED pattern of Ni(OH)₂ nanosheets, which are derived from the alkali etching of NiMoO₄·xH₂O. (E) Chronopotentiometric measurements at 10 mA cm⁻² of NiMoO₄·xH₂O and Ni(OH)₂ which is derived from the alkali etching of NiMoO₄·xH₂O, respectively. Here, after 6000 s testing, the NiMoO₄·xH₂O can completely reconstruct to NiOOH (CR-NiOOH) and Ni(OH)₂ can evolve to CR-NiOOH* under continuous OER testing. (F) LSV curves of samples after chronopotentiometric measurements in (E).

Figure S15. (A) SEM image of Ni(OH)₂ nanosheet arrays grown on the nickel foam. (B) TEM and (C) HRTEM images of β -NiOOH derived from Ni(OH)₂ after electro-oxidation in 1 M KOH. (D) iR-compensated OER polarization curves of β -NiOOH and CR-NiOOH derived from NiMoO₄·xH₂O.

Figure S16. CV curves of NiMoO₄·xH₂O NWs/NF measured in (A) 0-0.3 V, (B) 0-0.4 V, (C) 0-0.5 V, (D) 0-0.6 V and (E) 0-0.7 $V_{Hg/HgO}$ at 50 mV s⁻¹ for 30 cycles. (F) HRTEM image of NiMoO₄·xH₂O after CV measurements in (A). (G) Raman spectra of NiMoO₄·xH₂O initially and after CV measurements in (A). (H) HAADF STEM image and corresponding elemental mappings as well as (I) EDX spectrum.

Figure S17. TEM images of (A1) NiMoO₄·xH₂O nanosheets and (A2) its product after soaking in 1 M KOH for 2 h. (A3) TEM and (A4) HRTEM images of CR-NiOOH nanosheets. TEM images of (B1) Ni-NTC microspheres and (B2) its product after soaking in 1 M KOH for 12 h. (B3) TEM and (B4) HRTEM images of CR-NiOOH microspheres. TEM images of (C1) CoMoO₄·0.75H₂O nanowires and (C2) its product after soaking in 1 M KOH for 10 min. (C3) TEM and (C4) HRTEM images of CR-CoOOH nanowires. TEM images of (D1) Co(CO₃)_{0.5}(OH)·0.11H₂O nanowires and (D2) its product after soaking in 1 M KOH for 2 h. (D3) TEM and (D4) HRTEM images of CR-CoOOH nanowires.

Figure S18. (A) Chronopotentiometric measurements of catalysts at 10 mA cm⁻², which reflects the potential change from initial to steady state. iR-compensated OER polarization curves normalized by (B) geometric area, (C) ECSA, and (D) mass at a scan rate of 0.5 mV s⁻¹. (E) Experimental gas evolution during OER and theoretical amount of gas based on CR-NiOOH electrode.

The elementary evolution steps for NiMoO₄·xH₂O in alkaline solution are depicted as follows:

$NiMoO_4 \cdot xH_2O + 3OH^- \rightarrow NiOOH + MoO_4^{2-} + (x + 1)H_2O + e^-$	(1)
$NiOOH + OH^- \leftrightarrow NiO(OH)_2 + e^-$	(2)
$NiO(OH)_2 + 2OH^- \leftrightarrow NiOO_2 + 2H_2O + 2e^-$	(3)
$NiOO_2 + OH^- \rightarrow NiOOH + O_2 \uparrow + e^-$	(4)
Summary of (2) – (4): $40H^- \rightarrow 2H_20 + 0_2 \uparrow +4e^-$	

Figure S19. (A, B) TEM, (C) HAADF STEM, and (D) HRTEM images of CR-NiOOH after long-term stability test.

Figure S20. Chronopotentiometric measurements of CR-NiOOH at 10 mA cm⁻² for UOR. Inset: iR-compensated UOR polarization curves of CR-NiOOH and NiMoO₄@NiOOH catalysts normalized by mass.

Figure S21. Evaluating CR-NiOOH in 1 M KOH at 52.4°C. (A) Chronopotentiometric measurement of CR-NiOOH at 10 mA cm⁻². (B) Raman spectrum of CR-NiOOH after OER durability.

As shown in **Figure S21A**, the CR-NiOOH can provide a stable OER catalysis at 52.4°C for 120 h, with the overpotential increase of only ~10 mV. Besides, two peaks centered at 474 and 554 cm⁻¹ which belong to NiOOH are observed in Raman spectrum for CR-NiOOH after such a stability test (**Figure S21B**). These results suggest the excellent phase and catalytic stability of CR-NiOOH during high-temperature OER catalysis.

Figure S22. (A-C) TEM and (D) HAADF STEM images and the corresponding elemental mappings of Fe-NiOOH (molar ratio of Fe/Ni is 0.076) after long-term stability test in 30 wt.% KOH.

Figure S23. Chronopotentiometric measurements of MoO_2 -Ni arrays at -10 mA cm⁻² in 30 wt.% KOH for HER.

Figure S24. Evaluating NiMoO₄ pre-catalyst in industrial 30 wt.% KOH. (A) HAADF STEM image and (B) the corresponding EDX spectrum after measurement in 30 wt.% KOH. (C) The recorded chronopotentiometric measurement of NiMoO₄/NF at 10 mA cm⁻².

Table S1. Summary of the representative Co/Ni/Fe/Mn-based electrocatalysts and their surface components after activation during OER.

	Partial reconstructed species	References	
Catalysts	on the surface		
NiO	NiOOH and Ni(OH) ₂	Jpn. J. Appl. Phys. 2009, 48, 015501	
NiCr ₂ O ₄	Amorphous NiOOH	Chem. Commun. 2018, 54, 4987-4990	
Ni ₂ P	NiOOH	Chem. Mater. 2017, 29, 8539-8547	
NicN	NEOOU	J. Am. Chem. Soc. 2015, 137, 4119-	
INI3IN	Noon	4125	
Ni ₃ S ₂	Amorphous Ni(OH)x	Nanoscale, 2018, 10, 17347-17353	
Ni-P	Nickel oxides/hydroxides	Energy Environ. Sci. 2016, 9, 1246- 1250	
Ni ₃ S ₂ /Ni	Hydrated nickel oxide	Energy Environ. Sci. 2013, 6, 2921- 2924	
$Ni/Ni_{x}M_{y}$ (M = P, S)	Ni oxide species	Adv. Funct. Mater. 2016, 26, 3314-3323	
Ni5P4	NiOOH	Angew. Chem. Int. Ed. 2015, 54, 12361- 12365	
TiN@Ni₃N	NiOOH	J. Mater. Chem. A 2016, 4, 5713-5718	
NiS	NiOOH	Chem. Commun. 2016, 52, 1486-1489	
Ni ₃ N	Ni hydrate/hydroxide	J. Mater. Chem. A 2015, 3, 8171-8177	
Ni ₂ P	NiOx	Chem. Commun. 2015, 51, 11626- 11629	
Ni ₂ P ₄ O ₁₂	Hydroxide	Adv. Mater. 2018, 30, 1705045	
	Nickel		
Ni ₂ P	oxides/hydroxides/oxyhydroxide ACS Catal. 2016, 6	ACS Catal. 2016, 6, 714-721	
	S		
NixB	NiOx	Adv. Energy Mater. 2017, 7, 1700381	
Fe-doped nickel phosphate	NiOOH	Chem. Mater. 2016, 28, 5659-5666	
Ni ₂ P	NiOx	Energy Environ. Sci. 2015, 8, 2347- 2351	
CP@Ni-P	NiO/Ni(OH) _x	Adv. Funct. Mater. 2016, 26, 4067-4077	
Co4N	CoOx	Angew. Chem. Int. Ed. 2015, 127, 14923-14927	
NiSe	NiOOH	Angew. Chem. Int. Ed. 2015, 127, 9483- 9487	
Nickel sulfide	Nickel oxides	Adv. Energy Mater. 2016, 6, 1502333	
FeP/NicP	Nickel and iron	Nat Commun 2018 9 2551	
	oxides/oxyhydroxides	Nat. Commun. 2018, 9, 2551	
Nickel-iron disulfide	Ni(Fe)OOH	J. Mater. Chem. A 2017, 5, 4335-4342	
Mn ₃ N ₂	MnOx	Angew. Chem. Int. Ed. 2017, 130, 706- 710	
Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-δ}	Metal oxy(hydroxide)	Nat. Mater. 2017, 16, 925-931	

Table S2. Summary of the reconstruction results between the reconstruction layer thicknesses (RLt) and the smallest size of OER pre-catalyst in one dimension in our work and previous works.

The smallest size in RIt		Rlt	References	
Catalysts	one dimension (nm)	(nm)	References	
NiMoO ₄ ·xH ₂ O nanowires	200	200		
Co(CO ₃) _{0.5} (OH)·0.11H ₂ O	150	150	This work	
nanowires	150			
NiMoO ₄ nanowires	200	7		
	8700 (For		Energy Environ. Sci. 2019, 12, 684- 692	
Boronized Ni	convenience, the	2-5		
Boronizou Hi	value of 300 is shown	20		
	in Figure 1)			
Ni ₃ Se ₂ nanoparticles	~200	4-5		
NiSe nanoparticles	250	4-6	ACS Catal. 2017, 7, 310-315	
NiO nanoparticles	~100	7-8		
FeB ₂ nanoparticles	20-50	~15	Adv. Energy Mater. 2017, 7, 1700513	
Ultrathin FeSe	15	15	J. Am. Chem. Soc. 2019, 141, 7005-	
nanosheets	15	15	7013	
	- 50	10	Energy Environ. Sci. 2015, 8, 2347-	
	~30	~10	2351	
Co-C particles	20-30	20-30	ACS Appl. Energy Mater. 2018, 1,	
	20-30	20-30	5145, 5150	
F-incorporating NiFe	ng NiFe	35 Napo Lett 2019 19 530-537		
hydroxide nanosheets	100	00		
Ni₂P hollow	13-19	~8	Chem Mater 2017 29 8539-8547	
microspheres				
Co ₂ (OH)Cl nanoparticles	~10	10	Adv. Mater. 2019, 31, 1805127	
LaFeo 2Nio 8O3 nanorods	37	4	Angew. Chem. Int. Ed. 2015, 127,	
			2338-2342	
La2NiMnOs nanoparticles	~33	5-8	J. Am. Chem. Soc. 2018, 140, 11165-	
		00	11169	
Co₄N nanowires	~100	5-10	Angew. Chem. Int. Ed. 2015, 127,	
	100	010	14923-14927	
Ni ₃ C/C nanoparticles	20-50	8		
Lithiated NiO	5	5	ACS Energy Lett. 2019, 4, 2585-2592	
nanoparticles	5	0		
Ni nanoparticles	~100	~5	Adv. Mater. 2016, 28, 3326-3332	
Ni-Fe disulfide	~75	~10	J. Mater. Chem. A 2017, 5, 4335-4342	
microspheres				
Ultrathin Ni-Fe LDH	12	12	ACS Catal. 2019, 9 6027-6032	
nanosheets	··	1.2	100 Odidi. 2010, 0,0021-0002	

Table S3. Comparison of recently reported AWE performance based on coupled (or bifunctional) catalysts tested in 1 M KOH.

Anode//cathodic catalysts	AWE performance	Stability	References
Fe-NiOOH/NF//MoO2-Ni/NF	1.48 V at 10 mA cm ⁻²	580 h at 10 mA cm ⁻²	This work
			Energy Environ.
Ni11(HPO3)8(OH)6	1.65 V at 10 mA cm ⁻²	100 h at 1.65 V	Sci. 2018, 11,
			1287-1298
			Adv. Funct.
NiFe LDH@NiCoP/NF	1.57 V at 10 mA cm ⁻²	100 h at 10 mA cm ⁻²	Mater. 2018, 28,
			1706847
	1.678 V at 10 mA cm ⁻		Nano Lett. 2017,
CONIGINC-600	2	19.44 h at 10 mA cm ²	17, 7773-7781
LSC&MoSe ₂ (LSC:	2.2.1/ at 100 m Å am ⁻²	1000 h at 100 mA cm ⁻ 2	Nat. Commun.
La _{0.5} Sr _{0.5} CoO _{3-δ})	2.3 V at 100 mA cm ²		2019, 10, 1723
Cr. dopod FoNi, D/NCN (NCN)			Adv. Mater.
N deped cerbon panetubos)	1.50 V at 10 mA cm ⁻²	20 h at 10 mA cm ⁻²	2019, 31,
N-doped carbon nanotubes)			1900178
Co@N-CS/N-HCP@CC (N-			Adv. Enorgy
CS: N-doped carbon 1.545 V at 10 mA		$24 \text{ h at } 20 \text{ m} \text{ h am}^2$	Auv. Energy
nanosheets; N-HCP: N-doped	2 24 H at 30 HA CH-		1902019
hollow carbon polyhedra)			1003910
	1.54 V at 10 mA cm ⁻²	48 h at 10 mA cm ⁻²	Energy Environ.
Cu@NiFe LDH/Cu foam			Sci. 2017, 10,
			1820-1827
	1.42 // at 10 mA cm ⁻²	$40 \text{ h at } 20 \text{ m} \text{ h am}^2$	Nat. Commun.
	1.42 V at 10 mA cm -	~40 II at 50 IIIA 011	2018, 9, 2551

 Table S4. Comparison of reported catalytic performance of catalysts tested in industrialconcentration alkali.

Catalysts	Performance	References	
	~0.5 V vs. Hg/HgO at 10 mA cm ⁻² for 210 h	This work	
Fe-NiOOH/NF	(OER, 30 wt.% KOH); ~1.63 V at 10 mA cm ⁻² for		
	260 h (AWE, 30 wt.% KOH, coupled with MoO ₂ -		
	Ni cathode)		
DR-NiOOH/NF	~0.54 V vs. Hg/HgO at 10 mA cm ⁻² for 72 h	ACS Energy Lett. 2019,	
	(OER, 30 wt.% KOH)	4, 2585-2592	
Co15Ni30Mo55	39.81 mA cm ⁻² at overpotential of 400 mV (OER,	ECS Trans. 2006, 3,	
	30 wt.% KOH)	135-148	
NiFe-OOH/NF	~300 mA cm ⁻² at 1.6 V vs. RHE (OER, 30 wt.%	Mater. Chem. Front.	
	КОН)	2017, 1, 2541-2546	
Fe11.8%-Ni3S2/NF	~500 mA cm ⁻² at overpotential of 238 mV for 14	J. Mater. Chem. A 2015,	
	h (OER, 30 wt.% KOH)	3, 23207-23212	
Ni-Fe-OH@Ni ₃ S ₂ /NF	~1.65 V vs. RHE at 1000 mA cm ⁻² for 50 h (OER,	Adv. Mater. 2017, 29,	
	30wt.% KOH)	1700404	
Fe-NiSe/FeNi foam	~1.44 V vs. RHE at 100 mA cm ⁻² for 20 h (OER,	Chem. Commun. 2016,	
	30wt.% KOH)	52, 4529-4532	
NiO with O-vacancies	~1.64 V at 10 mA cm ⁻² for 20 h (AWE, 6 M KOH,	Nano Energy 2018, 43,	
(NiO-O _v)	coupled with NiO-O _v cathode)	103-109	
NiFe-LDH	~1.63 V vs. RHE at 1000 mA cm ⁻² for 1050 h	Nat. Commun. 2018, 9,	
	(OER, 10 M KOH)	2609	
	~1.45 V vs. RHE at 10 mA cm ⁻² for 12 h (OER,	ChemElectroChem 2018,	
	30 wt.% KOH)	5, 2795-2807	