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Experimental Section  

Material synthesis: The heterostructured Fe/Co phthalocyanine microrods were obtained 

by a solvothermal method. 200 mg of FePc and CoPc with different mass ratios (FePc:CoPc = 

1:3, 1:1, 3:1) were dispersed into 70 mL N,N-dimethylformamide (DMF) through 

ultrasonication. Next, the homogeneous solution was transferred into a 100 mL teflon-lined 

stainless steel autoclave and heated at 180
 o
C for 24 h. After autoclave cooling down to room 

temperature, the purple precipitates were collected, washed with ethanol for 3 times, and dried. 

Finally, the obtained intermediate was calcined at 450 
o
C for 3 hours to obtain the FePc/CoPc 

HS. 

Characterizations: To characterize the crystal properties of the samples, XRD was 

carried out using a Bruker D8 Discover X-ray diffractometer equipped with a Cu Kα radiation 

source. SEM images were detected by a JEOL-7100F scanning electron microscope. TEM 

images were collected by a Titan G2 60-300 with image corrector and EDX spectra were 

recorded using an Oxford IE250 system. XPS tests were measured on an ESCALAB 250Xi 

instrument. FT-IR was conducted on a Therno Nicolet Nexus instrument. ESR mesurments 

were collected on a JESFA200 instrument. 

Electrochemical measurements: ORR performance was measured on RDE/RRDE 

instrument equipped with a CHI 760D electrochemical station. The results were collected in 

O2 saturated 0.1 M KOH aqueous solution via three-electrode system, which was consisted of 

a saturated calomel electrode (SCE) as reference electrode, platinum black electrode as 

counter electrode, and glass carbon disk electrode of RDE (diameter = 5.0 mm) as work 

electrode. The ink was prepared by dispersing 5 mg of active electrocatalyst and 5 mg of 

VXC-72R in 800 μL of isopropyl alcohol, 150 μL of deionized water, and 50 μL of 5 wt% 

nafion. Then, 10 μL ink was dropped on the center of the glassy carbon dish electrode, the 

work electrode was obtained after the ink was dried. 
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All testing data were converted to reversible hydrogen electrode (RHE) via Nernst 

equation: ERHE = ESCE + (0.24 + 0.0592 pH) before analyzing.  

Electron transfer number was calculated following Koutecky-Levich equation: 
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where jL is diffusion-limiting current density, jK is kinetic current density, n is electron transfer 

number, F is the faraday constant; C0 is the saturated concentration of O2 in 0.1 M KOH; D0 is 

the diffusion coefficient of O2; v is the kinetic viscosity of solution, and ω is the rotating 

speed of the electrode. In this part, since jL and jK were detected, the n could be calculated. 

RRDE results could evaluate peroxide yields (HO2
-
, %) and electron transfer number (n) 

via the following equations: 
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(3) 

where Ir is the ring current, Id is the disk current, and N is the collection efficiency of Pt ring 

electrode of RRDE (0.37). 

Fabrication of primary Zn-air battery: The primary Zn-air battery was assembled with 

three parts. First of all, 33.66 g KOH and 2.72 g ZnCl2 were dissolved in 100 mL deionized 

water as electrolyte. Next, a polished zinc plate (1 cm in diameter) was used as anode. Then, 

the air cathode was prepared by loading catalyst ink on a hydrophobic carbon cloth substrate 

(1 cm in diameter) with a gas diffusion layer. The catalyst ink was prepared by using the same 

recipe as previous ORR tests except the loading mass (1 mg cm
-2

)
 
on the substrate. At last, a 

customized electrochemical cell was adopted to assemble the mentioned parts to be a primary 
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Zn-air battery. All the tests were conducted in the air condition without extra oxygen pumped 

in. The electrochemical data were put forward without IR correction. 

XAFS measurements: XANES and EXAFS experiments were conducted on the XAFCA 

beamline of Singapore Synchrotron Light Source. [1] 
The obtained EXAFS data were 

processed according to the procedures using ATHENA software package.
 [2]

 The k
3
-weighted 

EXAFS was acquired through deducting the post-edge background and normalizing the 

related edge-jump step. After that, k
3
-weighted χ(k) of Co K-edge and Fe K-edge went 

through Fourier transformation to the R space. 

DFT caculations: The FePc, CoPc, and Fe-CoPc slabs containing 114 atoms were 

created to investigate the coupling effect of FePc-CoPc heterostructure. The parameters of the 

slabs were a=b=c= 20 Å, α=β=γ= 90.  The structural relaxations were performed using the 

VASP (Vienna Ab-initio Simulation Package). Perdew-Burke-Ernzerhof (PBE) generalized 

gradient approximation (GGA) was carried out for the approximation of electronic exchange-

correlation functional. The energy cutoff for the plane wave expansion method was chosen to 

520 eV. Brillouin zone sampling was set to 1×1×1. Energy difference for SCF tolerance was 

set as 1.0×10
-5

 eV/atom for the convergence. The maximum force tolerance was set as 0.02 

eV/Å for structural relaxation. The DFT-D3 method with damping was selected to acccount 

for the contribution of van der Waals dispersion energies. 
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Figure S1. Synthetic schematic of FePc/CoPc HS. 
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Figure S2. XRD patterns of a) CoPc and b) FePc. 
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Figure S3. TG curves of commercial CoPc, commercial FePc and FePc/CoPc HS. 
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Figure S4. FT-IR spectra of CoPc, FePc, and FePc/CoPc HS. 
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Figure S5. SEM images of a) CoPc, b) FePc, and c) FePc/CoPc HS. 
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Figure S6. EDS spectrum of FePc/CoPc HS showing the elemental composition. 
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Figure S7. XPS spectra of CoPc, FePc, and FePc/CoPc HS. a) Full survey, b) Co 2p, c) Fe 2p, 

d) N 1s spectra. 
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Figure S8. a) ESR spectra of CoPc, FePc and FePc/CoPc HS. b) Schematic of the spin 

transition of Fe(II) in FePc/CoPc HS. 
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Figure S9. LSV curves of as-prepared CoPc, FePc, and commercial CoPc, FePc. 
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Figure S10. a) LSV curves and b) comparison diagrams of onset potential and half-wave 

potential of FePc/CoPc HS with different mass ratios. 
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Figure S11. Cyclic voltammograms of FePc/CoPc HS, FePc, and Pt/C at a scan rate of 5 mV 

s
-1

. 
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Figure S12. Chronoamperometric responses of FePc/CoPc HS, FePc, and Pt/C at 1000 rpm at 

half-wave potential. 
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Figure S13. The HAADF-STEM image and the corresponding EDS mappings of FePc/CoPc 

HS after 5000 s stability test. 
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Figure S14. XPS spectra of FePc/CoPc HS and corresponding catalysts after 5000 s stability 

test. a) Full survey, b) Co 2p, c) Fe 2p, d) N 1s. 
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Figure S15. a) LSV curves of FePc/CoPc HS at different rotating speeds from RDE. b) LSV 

curves of FePc/CoPc HS from RRDE. 

  



  

20 

 

 

 

 

 

 

Table S1. Electrochemical performance comparison of phthalocyanine-based catalysts. 

Materials Onset Potential (V) 
Half-wave Potential 

(V) 

Limiting Diffusion 

Current Density (mA 

cm-2) 

References 

FePc/CoPc HS a0.971 a0.879 5.71 This work 

FePc-G a0.960 a0.838 / [3] 

FePc-CNTs a0.864 a0.77 5.33 [4] 

Fe0.5Co0.5Pc-CP a0.937 a0.848 5.98 [5] 

PcCu-O8-Co / a0.83 5.3 [6] 

NP-Fe-HPC 

(FePc-based) 
/ a0.82 5.2 [7] 

NDC-900_Fe  

(FePc-based) 
b0.83 b0.76 / [8] 

FePc-PcFe c0.8 c0.59 / [9] 

CoPc-SO3H/CNT a0.88 a0.78 4.60 [10] 

MWNT/FePc-SH a0.971 a0.856 / [11] 

a: the electrolyte are 0.1 M KOH; b: the electrolyte are 0.05 M H2SO4; c: b: the electrolyte are 0.1 M HClO4 
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