Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.201803436

Realizing Three-Electron Redox Reactions in NASICON-Structured Na₃MnTi(PO₄)₃ for Sodium-Ion Batteries

Ting Zhu, Ping Hu, Xuanpeng Wang, Zhenhui Liu, Wen Luo, Kwadwo Asare Owusu, Weiwei Cao, Changwei Shi, Jiantao Li, Liang Zhou, * and Liqiang Mai*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

Realizing Three-Electron Redox Reactions in NASICON-Structured Na₃MnTi(PO₄)₃ for Sodium-ion Batteries

Ting Zhu,^a Ping Hu,^a Xuanpeng Wang,^a Zhenhui Liu,^a Wen Luo,^a Kwadwo Asare Owusu,^a

Weiwei Cao,^b Changwei Shi,^a Jiantao Li,^a Liang Zhou,^a* and Liqiang Mai^a*

^a T. Zhu, P. Hu, X. P. Wang, Z. H. Liu, Dr. W. Luo, K. A. Owusu, C. W. Shi, J. T. Li, Prof. L. Zhou, Prof. L. Q. Mai
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
Wuhan University of Technology, Wuhan 430070, P. R. China
^b W. W. Cao
UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex2, France

E-mail: liangzhou@whut.edu.cn, mlq518@whut.edu.cn

Synthesis of soft carbon

The soft carbon was prepared by direct pyrolysis of 3,4,9,10-perylene tetracarboxylic dianhydride (Alfa Aesar 98%) at 900 °C for 10 h in Ar (5 °C min⁻¹).

Full cell electrochemical performance test

The NMTP/C-650 cathode was further assembled with the soft carbon anode to obtain NMTP/C-650//C full cells. Before the full cell test, the soft carbon based anode was cycled at 100 mA g⁻¹ for 6 cycles. Electrochemical performance of the NMTP/C-650//C full cells was measured with a voltage window of 0.5 - 4.2 V.

Calculation of the theoretical capacity of Na₃MnTi(PO₄)₃

The intercalation/deintercalation number for each mol of $NaMnTi(PO_4)_3$ (the first charged state), 3 mol of Na^+ can be stored.

Theoretical capacity of Na₃MnTi(PO₄)₃:

 $(3 \text{ mol} * 96500 \text{ C/mol}) / (456.7 \text{ g/mol} * 3.6 \text{ C/mAh}) = 176 \text{ mAh g}^{-1}$ (1)

Space group=R-3c a (Å) = 8.8343 b/c = 0.4078		$R_p = 2.39 \%$ c (Å) = 21.665 c/a = 2.4524	4 a/b V(Å ³	p = 3.42 % p = 1.0000 p = 1464.35
Atom	Wyckoff site	Х	Y	Z
Na(1)	6b	0.00000	0.00000	0.00000
Na(2)	18e	0.63275	0.00000	0.2500
Mn(1)	12c	0.00000	0.00000	0.14860
Ti(1)	12c	0.00000	0.00000	0.14860
P(1)	18e	0.29857	0.00000	0.2500
O (1)	36f	0.20040	0.17431	0.09417
O(2)	36f	0.01858	0.21265	0.19197

 Table S1. Detailed structural information of Na₃MnTi(PO₄)₃ derived from Rietveld

 Refinement.

Figure S1. XRD patterns of NMTP/C-600 and NMTP/C-700.

Figure S2. TGA curves of NMTP/C-600 and NMTP/C-700.

	Chemical composition (wt.%)			
Sample —	С	Н	Ν	
NMTP/C-600	7.49	0	0.26	
NMTP/C-650	8.85	0	0.27	
NMTP/C-700	6.59	0	0.18	

Figure S3. Raman spectra of the NMTP/C-600, NMTP-650, and NMTP/C-700.

Figure S4. XPS survey spectra of the NMTP/C-600, NMTP-650, and NMTP/C-700.

Figure S5. High-resolution Mn 2p XPS spectra of NMTP/C-600 and NMTP/C-700.

Figure S6. High-resolution Ti 2p XPS spectra of NMTP/C-600 and NMTP/C-700.

Figure S7. SEM images (a, b), TEM images (c), and HRTEM image (d) of NMTP/C-600; HAADF-STEM image (e) of NMTP/C-600 and the corresponding elemental mappings (f) of manganese (green), titanium (orange), carbon (yellow), sodium (red), oxygen (purple), and phosphorus (blue).

Figure S8. SEM images (a, b), TEM images (c), and HRTEM image (d) of NMTP/C-700; HAADF-STEM image (e) of NMTP/C-700 and the corresponding elemental mappings (f) of manganese (green), titanium (orange), carbon (yellow), sodium (red), oxygen (purple), and phosphorus (blue).

Figure S9. Charge/discharge curve of NMTP/C-600 at different rates.

Figure S10. Charge/discharge curve of NMTP/C-700 at different rates.

Materials	Theoretical capacity (x mAh g ⁻¹)	Voltage range	Specific capacity at y C	Capacity retention after n cycle at z C	Reference
Na ₃ MnTi(PO ₄) ₃ @C	176	1.5 - 4.2 V	160 (y=0.2)	92% (n=500, z=2)	This Work
$Na_3V_2(PO_4)_3$	118	2.5 - 4.2 V	117 (y = 1)	92% (n=500, z=5)	1
$Na_3Fe_2(PO_4)_3$	115	1.5 - 4.2 V	109 (y=0.1)	96% (n=200, z=1)	2
Na ₃ MnTi(PO ₄) ₃	117	2.5 - 4.2 V	114 (y=0.1)	77% (n=100, z=0.1)	3
$Na_{3+x}V_{2-x}Ni_x(PO_4)_3/C$	118	2.5 - 4 V	113 (y=0.2)	95% (n=100, z=1)	4
Na ₃ FeV(PO ₄₎₃	116	2.5 - 3.8 V	103 (y=1)	95% (n=1000, z=1)	5
$Na_4MnV(PO_4)_3$	117	2.5 - 3.8 V	101 (y=1)	89% (n=1000, z=1)	5
Na ₄ NiV(PO ₄) ₃	116	2.5 - 4.2 V	80 (y=1)	83% (n=1000, z=1)	5
Na4MnV(PO4)3@C@GA	117	2.5 - 3.8 V	107 (y=1)	69% (n=4000, z=20)	6
$Na_3Cr_2(PO_4)_3$	117	2.5 - 4.7 V	98 (y=0.5)	6% (n=20, z=0.5)	7

Table S3. Electrochemical performances of recently reported NASICON-based sodium-ion battery cathode materials

References

S1. Y. N. Xu, Q. L. Wei, C. Xu, Q. D. Li, Q. Y. An, P. F. Zhang, J. Z. Sheng, L. Zhou, L. Q. Mai, Adv. Energy Mater. **2016**, 6, 1600389.

S2. R. Rajagopalan, B. Chen, Z. C. Zhang, X. L. Wu, Y. H. Du, Y. Huang, B. Li, Y. Zong, J. Wang, G. H. Nam, M. Sindoro, S. X. Dou, H. K. Liu, H. Zhang, Adv. Mater. **2017**, 29, 1605694.

S3. H. C. Gao, Y. T. Li, K. Park, J. B. Goodenough, Chem. Mater. 2016, 28, 6553.

S4. H. Li, Y. Bai, F. Wu, Q. Ni, C. Wu, ACS Appl. Mater. Interfaces 2016, 8, 27779.

S5. W. D. Zhou, L. G. Xue, X. J. Lü, H. C. Gao, Y. T. Li, S. Xin, G. T. Fu, Z. M. Cui, Y. Zhu, J. B. Goodenough, Nano Lett. **2016**, 16, 7836.

S6. H. X. Li, T. Jin, X. B. Chen, Y. Q. Lai, Z. A. Zhang, W. Z. Bao, L. F. Jiao, Adv. Energy Mater. **2018**, 1801418.

S7. K. Kawai, W. W. Zhao, S. Nishimura, A. Yamada, ACS Appl. Energy Mater. 2018, 1, 928.

Figure S11. Nyquist plots of NMTP/C-600, NMTP/C-650, and NMTP/C-700. (inset: equivalent circuit model. R_e represents electrolyte resistance, R_{sf+ct} represents surface and charge transfer resistance, R_b represents bulk resistance, CPE represents constant phase element, and W represents Warburg impedance).

Table S4	. Fitting	results	of the	EIS	plots
----------	-----------	---------	--------	-----	-------

Sample	R_{sf+ct}/Ω	$ m R_b/\Omega$
NMTP/C-600	141.5	237.3
NMTP/C-650	88.39	208.4
NMTP/C-700	157.8	196.9

Figure S12. SEM images of soft carbon.

Figure S13. XRD pattern (a) and Raman spectrum (b) of soft carbon.

Figure S14. The cyclic performance (a) and charge/discharge curves (b) of soft carbon tested at 100 mA g^{-1} .

Figure S15. The cycling performance (a) and charge/discharge curves (b) of NMTP/C-650//C at 0.5 C.