Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

ADVANCED MATERIALS

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.201803220

The Marriage of the FeN₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters

Zilan Li, Zechao Zhuang, Fan Lv, Han Zhu, Liang Zhou, Mingchuan Luo, Jiexin Zhu, Zhiquan Lang, Shihao Feng, Wei Chen,* Liqiang Mai,* and Shaojun Guo* Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.201803220

The Marriage of FeN₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron

Delocalization Matters

Zilan Li, Zechao Zhuang, Han Zhu, Fan Lv, Liang Zhou, Mingchuan Luo, Jiexin Zhu, Ziquan Lang, Shihao Feng, Wei Chen, * Liqiang Mai, * and Shaojun Guo*

Z. Li,^[+] Z. Zhuang,^[+] Prof. L. Zhou, J. Zhu, Z. Lang, S. Feng, Prof. W. Chen, Prof. L. Mai

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P.

R. China. E-mail: mlq518@whut.edu.cn; chenwei2005@whut.edu.cn

F. Lv, Dr. M. Luo, Prof. S. Guo

Department of Materials Science and Engineering, and BIC-ESAT, College of Engineering, Peking University, Beijing 100871, P. R. China. E-mail: <u>guosj@pku.edu.cn</u>

Dr. H. Zhu

School of Chemical and Material Engineering, Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.

^[+] These authors contributed equally to this work and should be considered as co-first authors.

Experimental methods

Materials. Iron(II) phthalocyanine (FePc, 98%) was purchased from Shanghai D&B Biological Science and Technology Co., Ltd. (Shanghai, China). Titanium powders (99 wt.%, < 40 μ m), aluminum powders (99 wt.%, < 40 μ m) and graphite powders (99 wt.%, < 48 μ m) were purchased from Alfa Aesar Chemical Co., Ltd. (Ward Hill, USA). Hydrogen fluoride (HF, 49%) was purchased from Aladdin Industrial Inc. (Shanghai, China). N, N-dimethylformamide (DMF, 99%) and potassium hydroxide (KOH, 95%) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Pt/C powders (20 wt.%, < 3.5 nm) were purchased from Shanghai Hesen Electric Co., Ltd. (Shanghai, China).

Synthesis of Ti₃AlC₂. Ti₃AlC₂ was synthesized by following a reported method.^[1] In details, titanium, aluminum and graphite powders were fully blended with a molar ratio of 3.0:1.5:2.0, ball-milled for 48 h, and cold-pressed into cylindrical discs under pressure of ~1 GPa. The discs were then placed in a tube furnace under flowing argon, and heated to 1400 °C for 2 h. After cooling to room temperature, the discs were milled to obtain the desired Ti₃AlC₂ powders.

Synthesis of $Ti_3C_2T_x$ MXenes. 0.2 g Ti_3AlC_2 powder was immersed into a 30 mL 49% HF solution. The mixture was stirred at room temperature for 48 h to obtain a homogeneous suspension. Let the suspension stand for 10 mi before collecting by centrifugation with a speed of 10 000 rpm. The resultant $Ti_3C_2T_x$ MXene was washed by deionized water and dried in vacuum at 60 °C for 12 h.

Synthesis of FePc/Ti₃C₂T_x MXene. 30 mg of Ti₃C₂T_x MXene and a certain amount of pure FePc powders were dispersed in DMF solution under ultrasonic condition for 1 h, respectively. Next, the FePc DMF solution was added to one containing $Ti_3C_2T_x$ MXene, followed by ultrasonic treatment for 0.5 h. The mixed solution was further stirred for 20 h to achieve the loading of FePc on $Ti_3C_2T_x$ MXenes. The FePc/Ti₃C₂T_x MXene was collected by centrifugation, washed with DMF and ethanol, and dried in vacuum at 60 °C overnight.

Electrochemical measurements. All ORR measurements were conducted with a CHI 760D

electrochemical workstation (Chenhua, China) using a three-electrode cell at room temperature. A platinum (Pt) foil, a saturated calomel electrode (SCE) and a glassy carbon electrode (GCE) were used as counter, reference and working electrodes, respectively. The catalyst inks were prepared by primarily mixing 5 mg of catalyst powders and 5 mg of Vulcan XC72R carbon. Then the powder mixture was dispersed into a solution containing 800 μ L of isopropanol, 150 μ L of deionized water, and 50 μ L of a 5 wt.% Nafion solution. After ultrasonic treatment for 1 h, the catalyst inks were drop-casted onto a polished GCE surface up to the catalyst loading amount of 0.25 mg_{cat} cm_{disk}⁻². An O₂-saturated 0.1 M KOH solution serving as electrolyte was continuously purged with O₂ in all ORR measurements. All the potentials were calibrated to a reversible hydrogen electrode (RHE) according to the equation, *E*(RHE) = *E*(SCE) + 0.0591pH + 0.24. Linear sweep voltammetry (LSV) was carried out with a rotating disk electrode (RDE) at different rotation rates of 400, 625, 900, 1 225, 1 600, and 2 025 rpm with a sweep rate of 5 mV s⁻¹. The collected LSV data can be analyzed to determine the ORR kinetics using the Koutecky–Levich equation:

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_d} = -\frac{1}{nFAKC^o} - \frac{1}{0.62nFAD_{O_2}^{2/3}v^{-1/6}C^0\omega^{1/2}}$$

where *j*, *j_k*, and *j_d* stand for the measured, kinetic, and diffusion limiting currents, respectively, and *n* is the overall transferred electron number; *F* is the Faraday constant (96 500 cm⁻¹); *A* is the geometric electrode area (0.196 cm²); *K* is the rate constant for oxygen reduction; *C*^o is the saturated concentration of oxygen in 0.1 M KOH ($1.2 \times 10^{-6} \text{ mol cm}^{-1}$); *D_{0²}* is the diffusion coefficient of oxygen ($1.87 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$); *v* is the kinetic viscosity of the solution (0.01013 cm² s⁻¹); and ω is the rotation rate (rad s⁻¹) of the electrode. Further, rotating ring-disk electrode (RRDE) measurements were conducted at 1 600 rpm to obtain the peroxide species (HO₂⁻) yields and electron reduction number (*n*) as following the equation:

$$\mathrm{HO}_2^- = 200 \frac{I_r/N}{I_d + I_r/N}$$

$$n = 4 \frac{I_d}{I_d + I_r/N}$$

where I_d represents the disk current, I_r represents the ring current, and N represents the current collection efficiency (0.37) of the RRDE in our system. The turnover frequency (TOF) of catalytically active FeN₄ sites can be obtained according to the equation:

$$TOF = \frac{J_k N_e}{\omega_{Fe} C_{cat} N_A / M_{Fe}}$$

where J_k is the kinetic current density (A cm⁻²), N_e is the electron number per Coulomb 6.24 × 10¹⁸, ω_{Fe} is the active Fe content in catalysis, C_{cat} is the catalyst loading, N_A is the Avogadro constant (6.022 × 10²³), and M_{Fe} is the mass per mole of Fe (55.845 g mol⁻¹).

Characterizations. X-ray diffractometer (XRD) analysis was performed on a smart lab diffractometer (Rigaku, Japan) worked at 40 kV and 120 mA with a Co K α radiation source ($\lambda = 1.79$ Å) in a 2 θ angular range of 5–80°. Scanning electron microscope (SEM) images were collected using a JSM-7100F microscope (JEOL, Japan) at an acceleration voltage of 10 kV. Transmission electron microscope (TEM) images were divulged by a JEM-2100F/Titan G2 60-300 microscope (JEOL, Japan). Brunauer–Emmett–Teller (BET) tests were carried out using a TriStar-3020 gas adsorption analyzer at 77 K (Micromeritics Instrument Co., USA). Energy-dispersive X-ray spectrometer (EDS) mapping was conducted on an Oxford IE250 (Oxford Instruments, UK) system. Fourier transform infrared (FTIR) transmittance spectra were recorded using a Nicolet 6700 (Thermo Fisher Scientific Co., USA) IR spectrometer. Inductively coupled plasma mass spectrometry (ICP–MS) analysis was accomplished using a Thermo ICAP6300 equipment (Thermo Fisher Scientific Co., USA) to obtain the loading mass of FePc. X-ray photoelectron spectroscopy (XPS) were recorded on an ESCALAB 250 Xi spectrometer (VG Scientific Co., UK) with an Al K α X-ray radiation (1486.6 eV). Ultraviolet photoemission spectroscopy (UPS) measurements were also carried out on an ESCA LAB 250 Xi spectrometer with He I resonance lines (21.2 eV). Ultraviolet–visible (UV–vis) absorption spectra

were recorded on a Lambda 35 spectrometer (Perkin–Elmer Instruments, USA). ⁵⁷Fe Mössbauer spectra were obtained using an Oxford MS-500 instrument (Oxford Instruments, UK) with a ⁵⁷Co source in a rhodium matrix at room temperature, and then were least squares fitted delivering the values of isomer shift (δ_{iso}), electric quadrupole splitting (ΔE_Q), and relative area of Fe ions. Temperature-dependent magnetic susceptibility plots were measured in the temperature range from 10 to 300 K with a physical property measurement system model 6000 (Quantum Design, USA). Electron spin resonance (ESR) spectra were recorded by an ER200-SRC-10/12 (Bruker, Germany) spectrometer at 300 K.

Figure S1. a–c) SEM images of pristine Ti_3AlC_2 , $Ti_3C_2T_x$, and $FePc/Ti_3C_2T_x$, respectively. The scale

bars are 1 μ m.

7

Figure S2. a, b) TEM images of FePc/Ti₃C₂T_x. The scale bars are 5 nm (a) and 10 nm (b).

Figure S3. a) N₂ adsorption–desorption isotherms and b) pore-size distribution of Ti_3AlC_2 , $Ti_3C_2T_x$, and FePc/ $Ti_3C_2T_x$, repectively.

Figure S4. XRD pattern of Ti₃AlC₂.

Figure S5. EDS mapping images of $Ti_3C_2T_x$. The scale bar is 1 μ m.

Figure S6. FTIR spectra of pristine $Ti_3C_2T_x$ and FePc.

Figure S7. a–c) Koutecky–Levich plots of FePc/Ti₃C₂T_x at 0.50, 0.55, and 0.60 V vs. RHE, respectively.

Figure S8. LSV curves of pristine FePc and FePc/Ti₃C₂T_x with different weight ratios.

Figure S9. *i*–*t* curves of Pt/C, FePc and FePc/Ti₃C₂T_x at 0.85 V vs. RHE.

Figure S10. XPS survey spectrum of FePc/Ti₃C₂T_x.

Figure S11. *UV–vis absorption spectra of pristine FePc and* FePc/Ti₃C₂T_{*x*}.

Figure S12. a–c) ESR spectra with g-factor of pristine FePc, $FePc/Ti_3C_2T_x$, and $Ti_3C_2T_x$.

	Fe/wt.%	Ti/wt.%
FePc	9.17 ± 0.02	-
$FePc/Ti_3C_2T_x$	4.09 ± 0.02	29.94 ± 0.02

Table S1. ICP–MS results of pristine FePc and FePc/Ti $_3C_2T_x$.

Electrocatalysts	Eonset	$E_{1/2}$	$J_{\rm k}/{ m mA~cm}^{-2}$	Reference	
	0.07	0.80	3.0 at 0.9 V	This work	
$\operatorname{Ferc}/\Pi_3 \mathbb{C}_2 \mathbb{I}_x$	0.97	0.89	15.5 at 0.85 V	THIS WOLK	
	0.00	0.00	6.1 at 0.9 V		
Fe-ISAS/CIN	0.98	0.90	37.8 at 0.85 V	Angew. Chem., Int. Ed. 2017, 56, 6957.	
nCNT@Ea@GI	0.07	0.07	2.1 at 0.9 V	1 dr. Mator 2017 20, 1606524 [3]	
pentareager	0.97	0.87	9.7 at 0.85 V	Auv. Mater. 2017, 29, 1000554.	
Fe_N_CNT_OPC	0.98	0.96	1.6 at 0.9 V	Adv Mater 2014 26 6074 [4]	
	0.98	0.00	2.5 at 0.85 V	Auv. Muler. 2014 , 20, 0074.	
E ₂ /SNC	0.07	0.95	1.9 at 0.9 V	$4max_{1}$ (have by Ed 2017 56 (10 ^[5])	
Fe/SINC	0.97	0.85	9.6 at 0.85 V	Angew. Chem., Int. Ed. 2017, 56, 610.	
FePhen@MOF-	1.02	0.96	1.9 at 0.9 V	Nat Commun 2015 6 7242 ^[6]	
ArNH ₃	1.03	0.86	8.3 at 0.85 V	Nui. Commun. 2013 , 0. 7343.	
(DFTPP)Fe-Im-	1 1	0.02	13.3 at 0.9 V	Angew Cham Int Ed 2014 53 6650 [7]	
CNTs	1.1	0.92	35.8 at 0.85 V	Angew. Chem., Int. Eu. 2014, 55, 0057.	
Fe@C-FeNC	0.98	0.80	5.2 at 0.9 V	I 4m Chem Soc 2016 138 3570 ^[8]	
reactione	0.98	0.07	17.3 at 0.85 V	<i>J. Am. Chem. Soc.</i> 2010 , 156, 5570.	
S N-Fe/N/C-CNT	0.96	0.85	1.5 at 0.9 V	Angew Chem. Int. Ed. 2017 , 56, 13800 ^[9]	
5,11-10,11,0-0111	0.90	0.05	5.4 at 0.85 V	Ingew. Chem., Int. Ed. 2017, 50, 15000.	
Fe-N-CNFs	0.98	0.85	1.3 at 0.9 V	Angew Chem Int Ed 2015 54 8179 ^[10]	
	0.90	0.05	6.4 at 0.85 V	ingen. Chem., int. Du. 2010, 51, 0119.	
Fe-NMCSs	1.02	0.86	1.7 at 0.9 V	Adv Mater 2016 28 7948 [11]	
	1.02		6.9 at 0.85 V		
Fe-N/C-800	0.97	0.82	0.56 at 0.9 V	J. Am. Chem. Soc. 2015, 137, 5555 ^[12]	
1'C-11/C-000	0.21	0.02	2.4 at 0.85 V		

Table S2. Comparison of ORR performance between $FePc/Ti_3C_2T_x$ and state of the art Fe–N–C catalysts reported in the literatures.

			20		
Fe2-Z8-C	0.98	0.87	2.6 at 0.9 V	Angew Chem Int Ed 2018 57 1204 [13	
	0.90	0.07	12 at 0.85 V	Angew. Chem., Int. 120. 2010 , 57, 120 4 .	
FePc-Py-CNTs	0.00	0.01	9.8 at 0.9 V	N = C 2012 4 207 c [14]	
	0.98	0.98 0.91	28.6 at 0.85 V	<i>Nat. Commun.</i> 2013 , 4, 2076. ¹¹⁴	

Electrocatalysts	Eonset	$E_{1/2}$	$J_{\rm k}/{\rm mA~cm}^{-2}$	Reference
EaDa/Ti C T	0.07	0.80	3.0 at 0.9 V	This work
	0.97	0.07	15.5 at 0.85 V	
FePc–Py–CNTs 0.	0.09	0.01	9.8 at 0.9 V	Nat. Commun. 2013. 4. 2076 [14]
	0.98	0.91	28.6 at 0.85 V	<i>Nul. Commun.</i> 2015, 4, 2070.
a FaDa	0.07	0.00	4.2 at 0.9 V	$ACS C_{retri} = 2012 + 2 + 1262 [15]$
g-rerc	0.97	0.88	10.4 at 0.85 V	ACS Catal. 2015, 5, 1205.
Pc-FePc/Mn-	0.07	0.0	5 at 0.9 V	News Exercise 2017 24 228 [16]
GCB	0.97	0.9	36 at 0.85 V	Nano Energy 2017, 34, 338.
FePc-Cg	_	0.83	_	J. Electroanal. Chem. 1987, 221, 95. ^[17]

Table S3. Comparison of ORR performance between $FePc/Ti_3C_2T_x$ and other FePcs supported on different substrates reported in the literatures.

 Table S4. ⁵⁷Fe Mössbauer parameters and relative absorption area obtained for each component

Sample	Component	A/%	$\delta_{ m iso}/ m mm~s^{-1}$	$\Delta E_Q/\mathrm{mm~s}^{-1}$	Assignment
FePc	Singlet	25.1	0.04	_	γ-Fe
	D1	_	_	_	High-spin Fe(II)
	D2	74.9	0.239	2.673	Intermediate-spin Fe(II)
FePc/Ti ₃ C ₂ T _x	Singlet	10	0	_	γ-Fe
	D1	47	0.245	0.483	High-spin Fe(II)
	D2	42.6	0.189	2.723	Intermediate-spin Fe(II)

from the fitting of the experimental spectra. The isomer shift is given versus that of γ -Fe.

References

- [1] Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, Y. Tian, J. Am. Chem. Soc. 2014, 136, 4113.
- [2] Y. J. Chen, S. F. Ji, Y. G. Wang, J. C. Dong, W. X. Chen, Z. Li, R. A. Shen, L. R. Zheng, Z. B.
- Zhuang, D. S. Wang, Y. D. Li, Angew. Chem., Int. Ed. 2017, 56, 6937.
- [3] S. H. Ahn, X. Yu, A. Manthiram, Adv. Mater. 2017, 29, 1606534.
- [4] J. Liang, R. F. Zhou, X. M. Chen, Y. H. Tang, S. Z. Qiao, Adv. Mater. 2014, 26, 6074.
- [5] P. Z. Chen, T. P. Zhou, L. L. Xing, K. Xu, Y. Tong, H. Xie, L. D. Zhang, W. S. Yan, W. S. Chu,
- C. Z. Wu, Y. Xie, Angew. Chem., Int. Ed. 2017, 56, 610.
- [6] K. Strickland, M. W. Elise, Q. Y. Jia, U. Tylus, N. Ramaswamy, W. T. Liang, M. T. Sougrati, F.
- Jaouen, S. Mukerjee, Nat. Commun. 2015, 6, 7343.
- [7] P. J. Wei, G. Q. Yu, Y. Naruta, J. G. Liu, Angew. Chem., Int. Ed. 2014, 53, 6659.
- [8] W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, L.-J.
 Wan, J. Am. Chem. Soc. 2016, 138, 3570.
- [9] H. J. Shen, E. Gracia-Espino, J. Y. Ma, K. T. Zang, J. Luo, L. Wang, S. S. Gao, X. Mamat, G. Z.
- Hu, T. Wagberg, S. J. Guo, Angew. Chem., Int. Ed. 2017, 56, 13800.
- [10] Z.-Y. Wu, X.-X. Xu, B.-C. Hu, H.-W. Liang, Y. Lin, L.-F. Chen, S.-H. Yu, Angew. Chem., Int. Ed. 2015, 54, 8179.
- [11] F. L. Meng, Z. L. Wang, H. X. Zhong, J. Wang, J. M. Yan, X. B. Zhang, Adv. Mater. 2016, 28, 7948.
- [12] W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang, S. Chen, J. Am. Chem. Soc. 2015, 137, 5555.

- [13] Q. T. Liu, X. F. Liu, L. R. Zheng, J. L. Shui, Angew. Chem., Int. Ed. 2018, 57, 1204.
- [14] R. Cao, R. Thapa, H. Kim, X. Xu, K. M. Gyu, Q. Li, N. Park, M. Liu, J. Cho, *Nat. Commun.***2014**, 4, 2076.
- [15] Y. Jiang, Y. Lu, X. Lv, D. Han, Q. Zhang, L. Niu, W. Chen, Acs Catal. 2013, 3, 1263.
- [16] Z. Zhang, M. Dou, J. Ji, F. Wang, Nano Energy 2017, 34, 338.
- [17] A. V. D. Putten, A. Elzing, W. Visscher, E. Barendrecht, J. Electroanal. Chem. 1987, 221, 95.