Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

ADVANCED MATERIALS

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.201801984

Interlayer-Spacing-Regulated VOPO₄ Nanosheets with Fast Kinetics for High-Capacity and Durable Rechargeable Magnesium Batteries

Limin Zhou, Qi Liu, Zihe Zhang, Kai Zhang, Fangyu Xiong, Shuangshuang Tan, Qinyou An,* Yong-Mook Kang, Zhen Zhou,* and Liqiang Mai*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

Interlayer Spacing Regulated VOPO₄ Nanosheets with Fast Kinetics for High-Capacity and Durable Rechargeable Magnesium Batteries

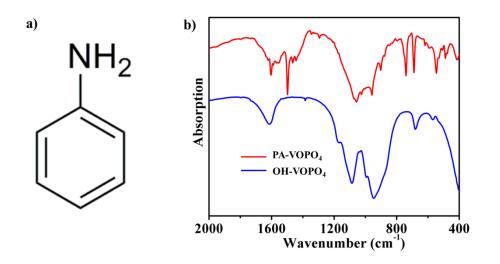
Limin Zhou, Qi Liu, Zihe Zhang, Kai Zhang, Fangyu Xiong, Shuangshuang Tan, Qinyou An,* Yong-Mook Kang, Zhen Zhou,* and Liqiang Mai*

Experimental Section

Material Synthesis: *Preparation of OH-VOPO*₄ *bulk*. The OH-VOPO₄ was obtained by a facile hydrothermal method. First of all, 2.4 g V₂O₅ powders and 13.3 mL concentrated H_3PO_4 were added successively into 57.7 mL of deionized H_2O following by magnetic stirring for 2 h. Afterwards, the mixed solution was transferred into a 100 mL Teflon vessel and sealed in a stainless steel autoclave and then heated at 120 °C for 16 h. The bright-yellow product was collected via washing with deionized water and acetone and drying at 60 °C under vacuum.

Intercalation of PA molecules into VOPO₄ nanosheets (PA-VOPO₄). The intercalation composite was synthesized by ultrosonicated exfoliation and self-assembly procedure. In a typical exfoliation process, 100 mg OH-VOPO₄ bulk was dispersed in 7 mL isopropanol, and then the solution was sonicated for 30 min. After centrifugation, the exfoliation sheets were added into phenylamine solvent for 24 h of stirring. The dark-green PA intercalated VOPO₄ samples were further washed with acetone for three times, and dried in vacuum at 60 °C for

overnight. Besides, the tap density is valuated to be 0.7659 g cm⁻³ for PA-VOPO₄ through simple ultrasound treatment.


Preparation of all phenyl complex (APC) electrolyte. The all phenyl complex (APC) electrolyte was prepared in argon-filled glove box (< 1 ppm of water and oxygen) according to previous literature.^[11] Specifically, 0.667 g aluminum chloride powder (AlCl₃, ultradry, 99.99 %) was slowly dissolved into 15 mL tetrahydrofuran (THF, anhydrous, 99.9 %, and dried by molecular sieves) for stirring 12 h. Then the above solution was slowly added into 5 ml phenyl magnesium chloride solution (2 M, PhMgCl/THF solution) for another 12 h of vigorous stirring to form APC electrolyte. The concentration of the as-prepared APC electrolyte is 0.25 M.

Material Characterization: The structure of the as-prepared samples was characterized by powder X-ray diffraction (XRD) patterns collected on a Bruker AXS D8 Advance powder X-ray diffractometer using Cu K α radiation ($\lambda = 1.5418$). The geometric morphology of the samples was divulged by field-emission scanning electron microscope (FESEM, JEOL, JSM-7100F) and transmission electron microscope (TEM, JEOL 2100F). The elemental valence was analyzed by X-ray photoelectron spectroscopy on an ESCALAB 250 Xi spectrometer (XPS, VG Scientific Co., UK). The TG analysis was conducted on a NETZSCH-STA449c/3/G thermoanalyzer under an air atmosphere from 25 to 800 °C with a heating rate of 5 °C min⁻¹.

Electrochemical Tests: The electrochemical performance was tested with CR2032 coin cells, assembled by metallic magnesium as both reference and counter electrode, glass fiber as separator, APC as the electrolyte, and VOPO₄ nanosheets as working electrode. In order to avoid the side reaction, molybdenum foil was placed on electrode materials to ensure no-contact between electrolyte and battery case.^[2] The working electrode was prepared by mixing active materials (PA-VOPO₄ nanosheets or OH-VOPO₄ bulk), acetylene black (AB), and poly(tetrafluoroethylene) (PTFE) at a weight ratio of 6:3:1. Then cut into a small disk with a mass loading of $1.3-1.8 \text{ mg cm}^{-2}$. The as-prepared electrodes were dried under vacuum at 110 °C for 10 h. The galvanostatic discharge/charge tests were carried out on Land CT2001A battery test system within the voltage range of 0.3 - 2.4 V (vs. Mg^{2+}/Mg). Electrochemical impedance spectroscopy (EIS) measurement was performed on Autolab electrochemical workstation with the frequency from 100 KHz to 100 mHz. According to the literature reported, 18.7 μ L cm⁻² of electrolyte is needed to match 1 mAh cm⁻² of areal capacity when using MgCl₂ with 1.0 M concentration.^[3] While commercial separators (300 μ m thickness and 80 % porosity) may accommodate 24 μ L cm⁻² of electrolyte, which is enough for chloride ions to involve in MgCl⁺ insertion process. Thus, it is possible to assemble the cells based on the practical ratio between electrolyte volume and electrode surface.

Computational details: First-principles computations based on density functional theory (DFT) were performed by using projected augmented wave (PAW)^[4,5] pseudopotentials and

the Perdew–Burke–Ernzerholf (PBE)^[6] exchange–correlation functional as implemented in Vienna ab initio simulation package (VASP)^[5]. A 450 eV kinetic energy cutoff was used in all the computations. We performed the computations in a $2\times2\times1$ VOPO₄ supercell. To simulate the interlayer spacing expanded by aniline intercalation, the lattice constant of *z*-axis was fixed to 14.24 Å as achieved by XRD. Therefore, a $3\times3\times2$ Monkhorst-Pack k-point mesh was chosen for the sampling in the Brillouin zone.^[7] The DFT-D3 method with Becke-Johnson damping was also adopted to better evaluate the van der Waals interactions.^[8,9] In order to investigate the Mg²⁺ and MgCl⁺ diffusion dynamics between VOPO₄ layers, we used the climbing-image nudged elastic band (CI-NEB)^[10,11] method to calculate their migration pathways and the corresponding energy profiles.

Figure S1. The molecule structure of phenyl-amine (PA) and (b) FTIR spectra of OH-VOPO₄ bulk and PA-VOPO₄ nanosheets.

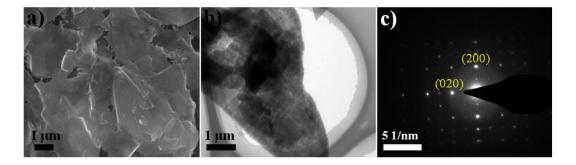
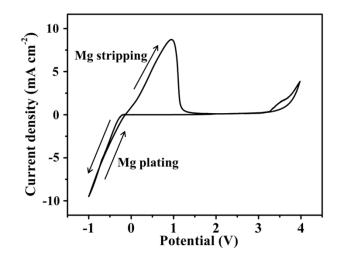
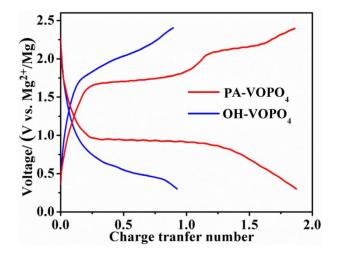




Figure S2. (a) SEM, (b) TEM, and (c) SAED of the OH-VOPO₄ bulk.

Figure S3. Cyclic voltammograms (CV) profile of APC electrolyte based on the counter and reference electrodes of magnesium foil and working electrode of platinum wire in three-electrode system at a scan rate of 25 mV s^{-1} .

We can see that the overpotential for Mg deposition is close to that of previous literature reported,^[1] and the stripping/plating efficiency is ~100 %. Besides, the available electrochemical window of the solution is below 3.2 V due to the anodic limitation.

Figure S4. The plot of voltage vs. charge transfer number of the OH-VOPO₄ bulk and PA-VOPO₄ nanosheets at 100 mA g^{-1} and 50th cycle.

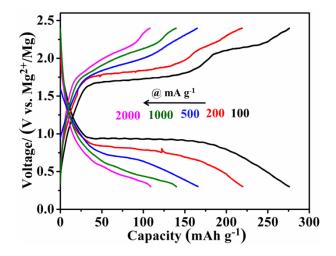
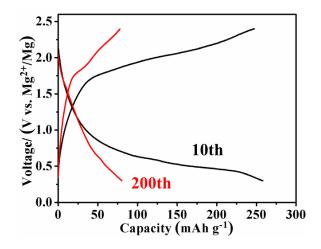
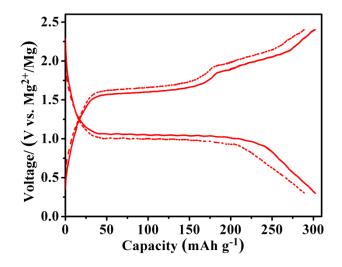




Figure S5. Charge/discharge curves of the PA-VOPO₄ nanosheets at different current densities.

Figure S6. Charge/discharge curves of the OH-VOPO₄ bulk at 100 mA g^{-1} .

Figure S7. Charge/discharge curves of the PA-VOPO₄ nanosheets at 100 mA g^{-1} and 10th cycle measured at 35 and 50 °C.

We can see that the capacities of PA-VOPO₄ increase to 288 and 302 mAh g⁻¹ at 35 and 50 $^{\circ}$ C, respectively. And the overpotential of PA-VOPO₄ gradually decreases at elevated temperature, illustrating the ion diffusion has obviously positive correlation with the operated temperature.

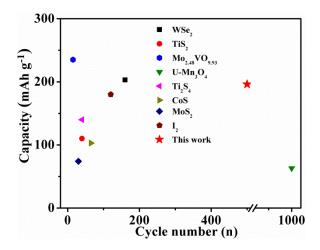


Figure S8. Comparison of cycling performance with other Mg-storage materials.

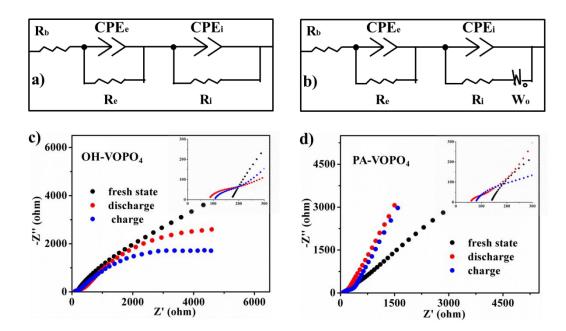
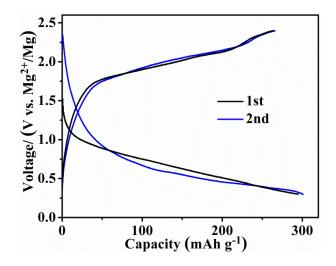
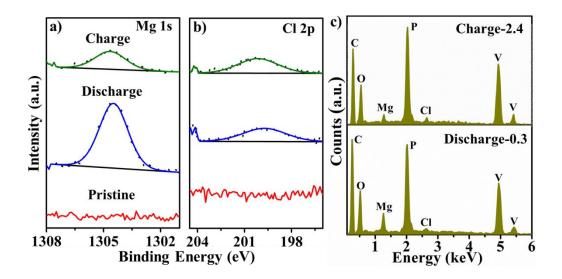




Figure S9. Equivalent circuits and the Nyquist plots of (a,c) OH-VOPO₄ and (b,d) PA-VOPO₄ electrodes at different cell states.

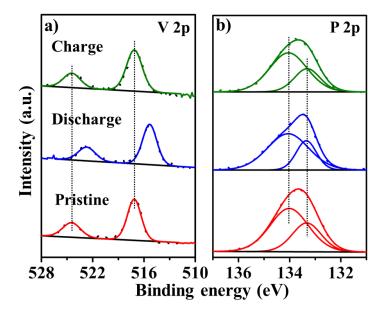

There is no straight line viewed for the OH-VOPO₄ bulk in the frequency range tested, reflecting sluggish electrode behavior. For the PA-VOPO₄ nanosheets, the obviously decreased R_e and R_i suggest that working cation of PA-VOPO₄ demonstrates low polarization and is not prone to trapped in the host, beneficial for good rate capability and long cycle life.

Figure S10. Charge/discharge curves of the OH-VOPO₄ bulk at 100 mA g^{-1} and 1st, 2nd cycles, illustrating the irreversible insertion/deinsertion reaction of OH-VOPO₄ electrode during initial charge/discharge process.

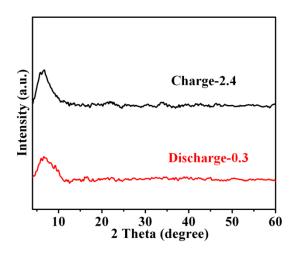


Figure S11. XPS spectra of (a) Mg 1s, (b) Cl 2p, and (c) EDS spectra for OH-VOPO₄ bulk at fully charged/discharged state.

Figure S12. XPS spectra of (a) V 2p and (b) P 2p for the PA-VOPO₄ nanosheets and cycled electrode at fully charged/discharged state.

It can be seen that the peaks of V 2p located at 517.2, 524.5 eV slightly shift towards lower binding energy on discharging, illustrating the valence of V element decreases accompanied by cation insertion. Upon cation de-intercalation, the peak position of V element could recover back to initial state.

Figure S13. XRD patterns of the PA-VOPO₄ electrode at fully charged/discharged state after 50 cycles.

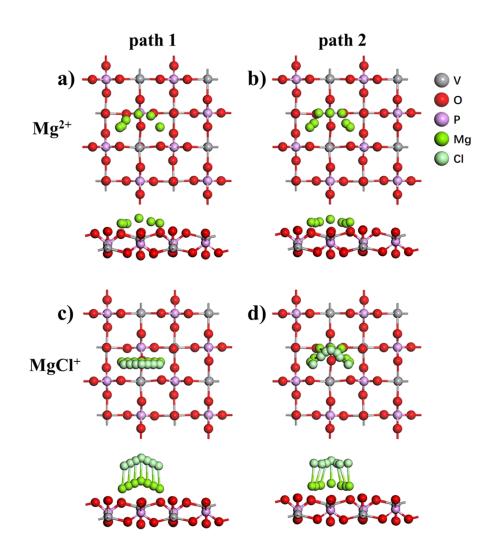


Figure S14. Top and side views of the migration paths of Mg^{2+} and $MgCl^{+}$ in PA-VOPO₄.

It is noticed that the path 2 for $MgCl^+$ shows abnormally high energy barrier, which might be attributed to the repulsion between the negatively charged O and Cl caused by the tilt configuration of $MgCl^+$ during the migration process.

Materials	Voltage Capacity		Rate capability	Cycling	Ref.
	(V)	(mAh g ⁻¹)	(mAh g ⁻¹)	capacity	
PA-VOPO ₄	0.95	310	$310 (50 \text{ mA g}^{-1})$	500 cycles,	This
nanosheets			275 (100)	192 mAh g ⁻¹	work
			220 (200)		
			175 (500)		
			140 (1000)		
			109 (2000)		
OH-VOPO ₄	0.6	305	305 (50)	130 cycles,	This
bulk			265 (100)	121 mAh g ⁻¹	work
			166 (200)		
			108 (500)		
			66 (1000)		
			43 (2000)		
TiS ₂	0.7	275	275 (12 mA g ⁻¹)	40 cycles,	[12]
			250 (23.9)	110 mAh g ⁻¹	
			140 (47.8)		
Mo _{2.48} VO _{9.93}	1.9	300	235(2)	15 cycles,	[13]
			114 (4)	58.7 mAh g ⁻¹	
U-Mn ₃ O ₄	0.8	100	103 (15.4)	1000 cycles,	[14]
			84 (30.8)	63 mAh g ⁻¹	
			76 (77)		
			67 (154)		
			58 (308)		
			37.5 (770)		
			22.5 (1540)		
C-Ti ₂ S ₄	1.2	200	200 (12)	40 cycles,	[15]
			195 (23.9)	140 mAh g ⁻¹	
			190 (47.8)		
CoS	0.8	125	125 (50)	65 cycles,	[16]
			105 (100)	103 mAh g ⁻¹	
			95 (150)		
Peo_2 -MoS ₂	0.65	82	70 (5)	30 cycles,	[17]
			62 (10)	74 mAh g^{-1}	
			55 (25)		
			44 (50)		
			38 (100)		

 Table S1. Summary of electrochemical performance of different host materials for rechargeable magnesium batteries.

			30 (250)		
			22 (500)		
I ₂	1.9	240	205 (52.75)	120 cycles,	[18]
			180 (105.5)	180 mAh g ⁻¹	
			145 (158.25)		
			140 (211)		

Table S2. Selected voltage position for mass measurement of PA-VOPO₄ electrode.

Voltage (V)	0.36	0.45	0.5	0.59	0.68
Capacity	305	294	285	269	254
(mAh g ⁻¹)					
Electrode	3.03	2.99	2.97	2.91	2.86
mass (mg)					

Note: The mass of fresh PA-VOPO₄ electrode is \sim 2.20 mg.

Table S3. Selected voltage position for mass measurement of OH-VOPO₄ electrode.

Voltage (V)	0.36	0.45	0.5	0.59	0.68
Capacity	280	203	176	129	98
(mAh g ⁻¹)					
Electrode	2.60	2.53	2.49	2.46	2.46
mass (mg)					

Note: The mass of fresh OH-VOPO₄ electrode is \sim 2.46 mg.

Table S4. Characterization of PA-VOPO4 nanosheets at different states based on EDS and
ICP-OES analysis.

stage	EDS	ICP-OES	
	Mg/Cl ratio		
Fully-discharged state	1.1	1.18	
Fully-charged state	0.8	0.84	

References

- [1] O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad,
 D. Aurbach, J. Electrochem. Soc. 2008, 155, A103.
- [2] Y. Cheng, D. Choi, K. S. Han, K. T. Mueller, J. G. Zhang, V. L. Sprenkle, J. Liu, G. Li, *Chem. Commun.* 2016, 52, 5379.
- [3] C. Liao, N, Sa, B. Key, A. K. Burrell, L. Cheng, L. A. Curtiss, J. T. Vaughey, J.-J. Woo,
- L. Hu, B. Pan, Z. Zhang, J. Mater. Chem. A 2015, 3, 6082.
- [4] G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- [5] G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- [6] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- [7] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- [8] S. Grimme, S. Ehrlich, L. Goerigk, J. Comut. Chem. 2011, 32, 1456.
- [9] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [10]G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.
- [11]G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978.
- [12] X. Sun, P. Bonnick, L. F. Nazar, ACS Energy Lett. 2016, 1, 297.
- [13] W. Kaveevivitchai, A. J. Jacobson, Chem. Mater. 2016, 28, 4593.
- [14]L. Wang, K. Asheim, P. E. Vullum, A. M. Svensson, F. Vullum-Bruer, *Chem. Mater.***2016**, 28, 6459.

- [15]X. Sun, P. Bonnick, V. Duffort, M. Liu, Z. Rong, K. A. Persson, G. Ceder, L. F. Nazar, *Energy Environ. Sci.* 2016, 9, 2273.
- [16] D. He, D. Wu, J. Gao, X. Wu, X. Zeng, W. Ding, J. Power Sources 2015, 294, 643.
- [17]Y. Liang, H. D. Yoo, Y. Li, J. Shuai, H. A. Calderon, F. C. Robles Hernandez, L. C.
- Grabow, Y. Yao, Nano lett. 2015, 15, 2194.
- [18]H. Tian, T. Gao, X. Li, X. Wang, C. Luo, X. Fan, C. Yang, L. Suo, Z. Ma, W. Han, C.

Wang, Nat. Commun. 2017, 8, 14083.