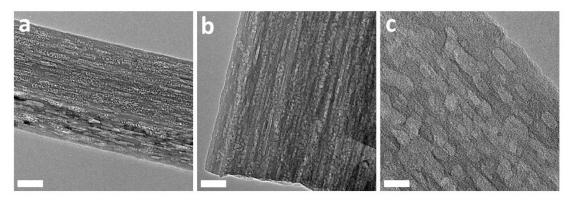
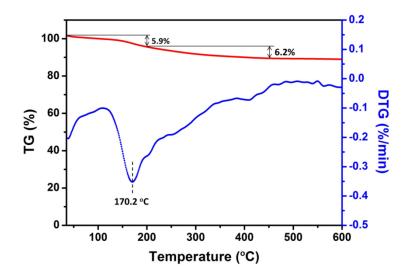

File name: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary Note 1

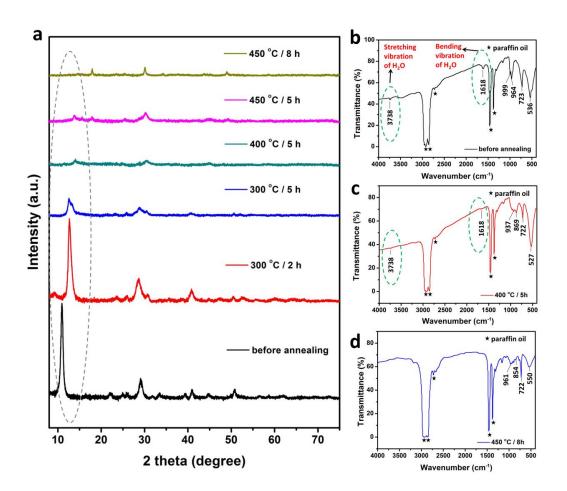
File name: Peer Review File Description:


## **Supplementary Information**

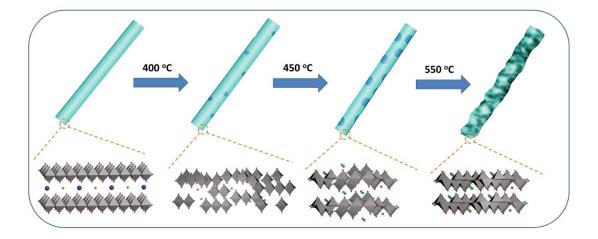



**Supplementary Figure 1** | **SEM images of the Ca-V-O nanowires.** (a) Unsintered Ca-V-O sample, (b) CVO-450 and (c) CVO-550. The scale bars of (a, b, c) are 1 μm.

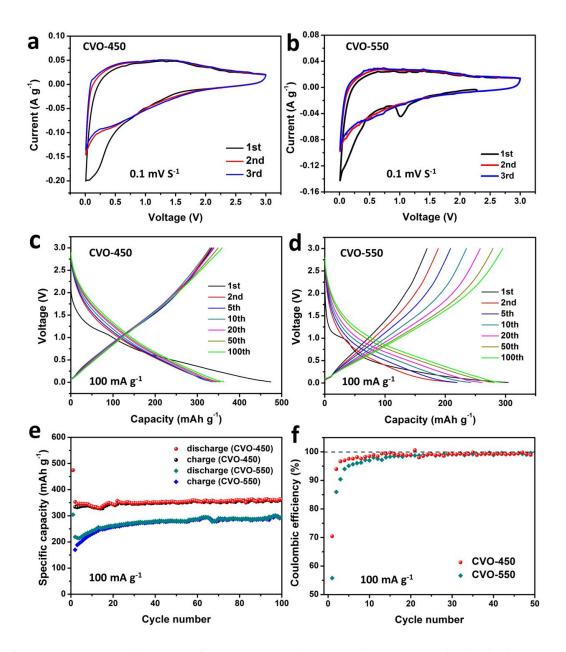



Supplementary Figure 2 | Characterization of VO<sub>2</sub>-450 nanowires. (a) XRD pattern, (b) crystal structure and (c,d) SEM images of VO<sub>2</sub>-450. The scale bar is 1  $\mu$ m for (c) and 100 nm for (d).

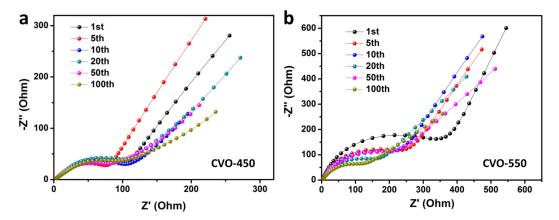



**Supplementary Figure 3 | TEM images of CVO-450.** The scale bars are 50 nm for (**a**, **b**) and 10 nm for (**c**).

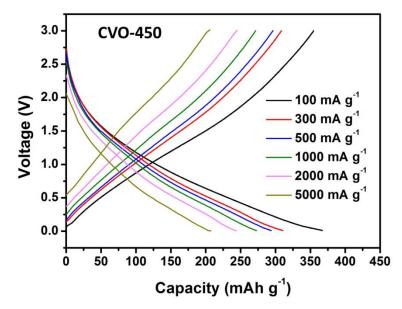



Supplementary Figure 4 | TG/DTG curves of unsintered Ca-V-O nanowire sample.

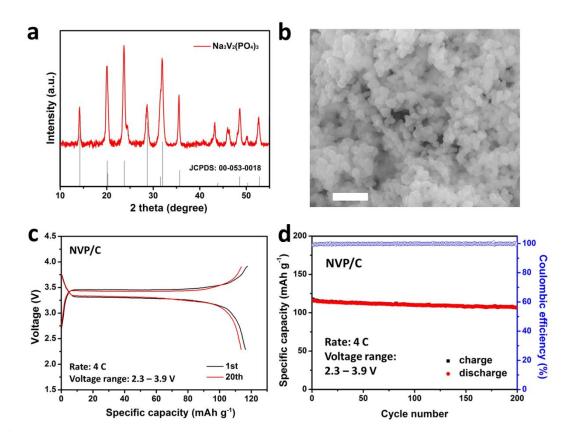



Supplementary Figure 5 | (a) XRD patterns of the Ca-V-O nanowire samples at different annealing condition. (b–d) FT-IR spectra of Ca-V-O nanowire samples before annealing (b), sintered at 400 °C for 5 h (c) and sintered at 450 °C for 8 h (d), respectively. (For the FT-IR spectra, the paraffin oil was used as the dispersant rather than KBr to avoid the moisture absorption during the test.)

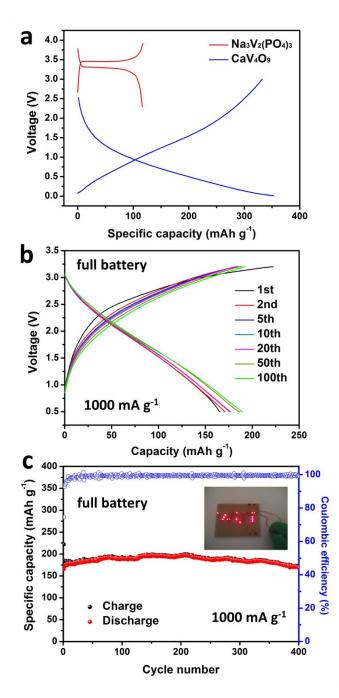



Supplementary Figure 6 | Illustration of the formation mechanism of the CVO-450 and CVO-550 nanowires.

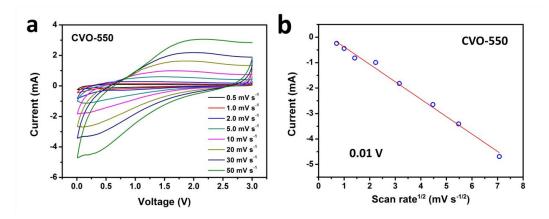



Supplementary Figure 7 | Electrochemical performance of CVO-450 and CVO-550. (a,b) CV curves of CVO-450 and CVO-550 at the scan rate of 0.1 mV s<sup>-1</sup> in the voltage range from 0.01 to 3.0 V *versus* Na<sup>+</sup>/Na. (c,d) Discharge-charge profiles of CVO-450 and CVO-550 after different cycles at 100 mA g<sup>-1</sup>. (e) Cycling performance of CVO-450 and CVO-550 at current density of 100 mA g<sup>-1</sup>. (f) Comparison of the Coulombic efficiency between CVO-450 and CVO-550 at current density of 100 mA g<sup>-1</sup>.

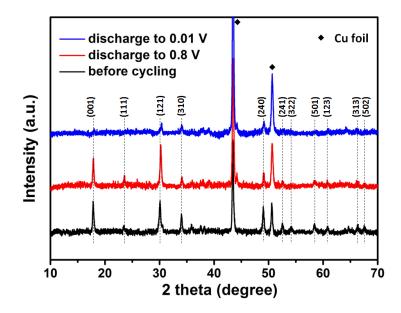



Supplementary Figure 8 | Nyquist plots of CVO-450 (a) and CVO-550 (b) after different cycles.

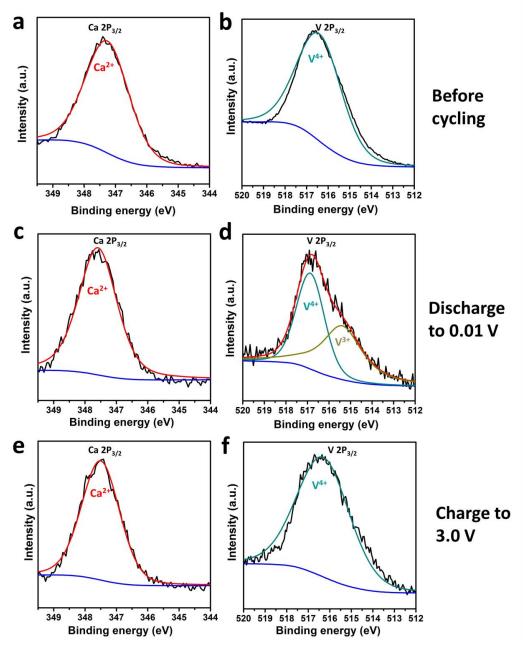



Supplementary Figure 9 | Discharge-charge curves of CVO-450 at 100, 300, 500, 1000, 2000, 5000 mA g<sup>-1</sup>, respectively.

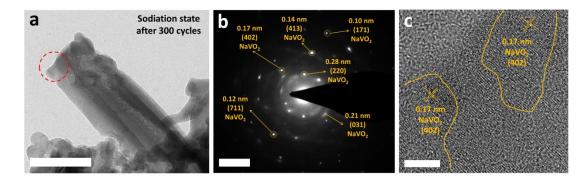



Supplementary Figure 10 | Characterization and electrochemical performance of  $Na_3V_2(PO_4)_3/C$  nanoparticles. (a) XRD pattern and (b) SEM image of  $Na_3V_2(PO_4)_3/C$  nanoparticles. Scale bar, 1 µm. (c) Charge-discharge profiles and (d) cycling performance of  $Na_3V_2(PO_4)_3/C$  nanoparticles at current rate of 4 C.

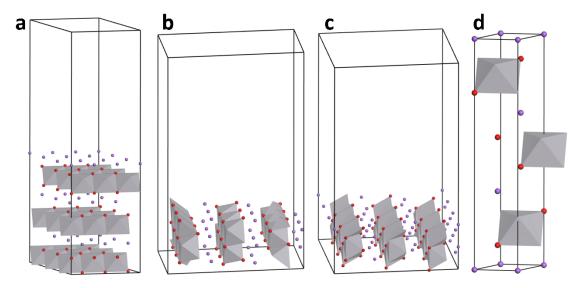



Supplementary Figure 11 | Electrochemical performance of  $Na_3V_2(PO_4)_3//CaV_4O_9$  full battery. (a) Typical charge-discharge curves of  $Na_3V_2(PO_4)_3$  and  $CaV_4O_9$ . (b) Charge-discharge curves of the full cell at the voltage range from 0.5 to 3.2 V after different cycles. (c) Cycling performance of the full cell at current density of 1000 mA g<sup>-1</sup> based on the mass of CVO-450, the inset is the photograph of LED powered by the  $Na_3V_2(PO_4)_3//CaV_4O_9$  full cells.

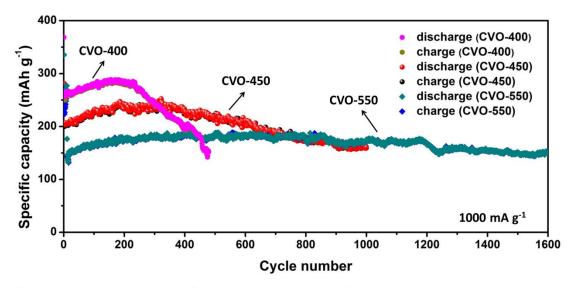



Supplementary Figure 12 | Cyclic voltammetry measurement of CVO-550 at different scan rates. (a) CV curves of CVO-550 at the scan rate from 0.5 mV s<sup>-1</sup> to 50 mV s<sup>-1</sup>. (b) The relation between the square root of the scan rate ( $v^{1/2}$ ) and the corresponding currents at 0.01 V.

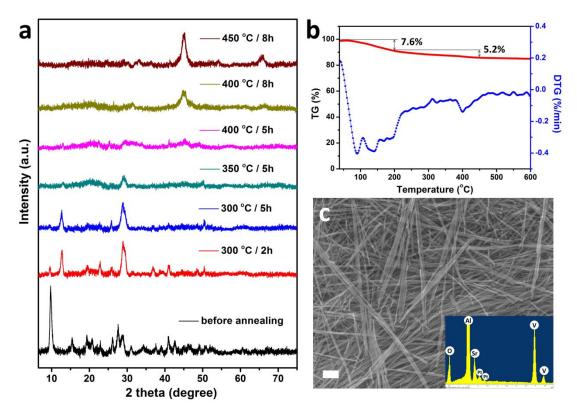



Supplementary Figure 13 | Ex situ XRD results of the CVO-550.

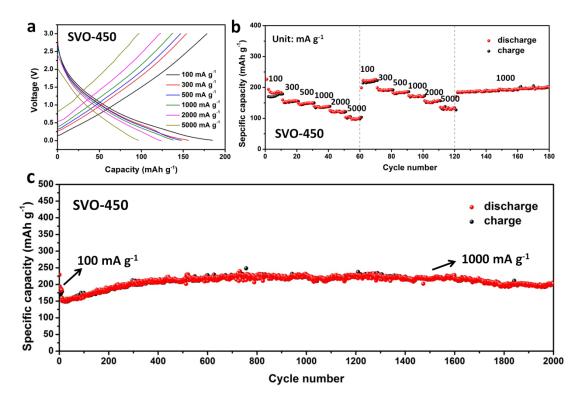



Supplementary Figure 14 | X-ray photoelectron spectra of Ca 2p<sub>3/2</sub> and V 2p<sub>3/2</sub> of CVO-450. (a,b) Before cycling, (c,d) discharge to 0.01 V, (e,f) charge to 3.0 V.




Supplementary Figure 15 | *Ex situ* TEM characterization of VO<sub>2</sub>-450 at the sodiation state after 300 cycles. (a) TEM image. Scale bar, 200 nm. (b) SAED pattern. Scale bar, 5 1/nm. (c) HRTEM image. Scale bar, 5 nm.




Supplementary Figure 16 | Models of NaVO<sub>2</sub> applied in DFT calculations. (a-c) Cells of NaVO<sub>2</sub> (001), (010) and (110) surfaces, respectively. (d) Cell of NaVO<sub>2</sub> crystal. The grey octahedrons with red balls indicate the VO<sub>2</sub> structure, and the violet balls denote the Na atoms.



Supplementary Figure 17 | Comparison of specific capacity and cycling stability of CVO-400, CVO-450 and CVO-550 at current density of 1000 mA g<sup>-1</sup>.



**Supplementary Figure 18** | **Characterization of the Sr-V-O nanowires.** (a) XRD patterns of the Sr-V-O nanowire samples at different annealing condition. (b) TG/DTG curves of unsintered Sr-V-O nanowire sample at Ar atmosphere. (c) SEM image of the SVO-450. Scale bar, 1 µm. Inset is the EDS result of SVO-450.



**Supplementary Figure 19** | **Electrochemical performance of SVO-450.** (a) Discharge/charge profiles of SVO-450 at different current density. (b) Rate capability of the SVO-450. (c) Cycling performance of the SVO-450.

| CVO-450         |                                         |          |                 | CVO-550                                 |         |          |                 | VO <sub>2</sub> -450 |         |                       |           |
|-----------------|-----------------------------------------|----------|-----------------|-----------------------------------------|---------|----------|-----------------|----------------------|---------|-----------------------|-----------|
| Current density | Average capacity (mAh g <sup>-1</sup> ) |          | Current density | Average capacity (mAh g <sup>-1</sup> ) |         |          | Current density | Average capacity (m  |         | mAh g <sup>-1</sup> ) |           |
| $(mA g^{-1})$   | Stage I                                 | Stage II | Stage III       | $(mA g^{-1})$                           | Stage I | Stage II | Stage III       | $(mA g^{-1})$        | Stage I | Stage II              | Stage III |
| 100             | 363.9                                   | 363.9    |                 | 100                                     | 265.2   | 331.5    |                 | 100                  | 234.8   | 251.1                 |           |
| 300             | 312.3                                   | 320.1    |                 | 300                                     | 250.5   | 282      |                 | 300                  | 206.6   | 218.7                 |           |
| 500             | 298                                     | 305      |                 | 500                                     | 225.3   | 253.2    |                 | 500                  | 200.7   | 202.1                 |           |
| 1000            | 273.6                                   | 279.5    | 291.7           | 1000                                    | 183.2   | 213.5    | 229.4           | 1000                 | 188.4   | 170.4                 | 161.3     |
| 2000            | 245.2                                   | 253.8    |                 | 2000                                    | 146.1   | 173.8    |                 | 2000                 | 170.5   | 138.2                 |           |
| 5000            | 205                                     | 206.1    |                 | 5000                                    | 103.4   | 130.2    |                 | 5000                 | 135.3   | 89.9                  |           |

Supplementary Table 1 | The details of average capacity of CVO-450, CVO-550 and  $VO_2$ -450 at different current density.

| No. | h | k | 1 | d [Å]   | 2 Theta [deg] | Intensity [%] |
|-----|---|---|---|---------|---------------|---------------|
| 1   | 1 | 1 | 0 | 5.88808 | 15.034        | 0.1           |
| 2   | 0 | 0 | 1 | 5.013   | 17.678        | 56.9          |
| 3   | 1 | 0 | 1 | 4.29478 | 20.665        | 0.6           |
| 4   | 2 | 0 | 0 | 4.1635  | 21.324        | 1.9           |
| 5   | 1 | 1 | 1 | 3.817   | 23.285        | 13.8          |
| 6   | 2 | 0 | 1 | 3.20288 | 27.832        | 6.8           |
| 7   | 1 | 2 | 1 | 2.98937 | 29.865        | 100           |
| 8   | 2 | 2 | 0 | 2.94404 | 30.336        | 6.4           |
| 9   | 3 | 1 | 0 | 2.63323 | 34.019        | 41            |
| 10  | 2 | 2 | 1 | 2.53863 | 35.328        | 1.7           |
| 11  | 0 | 0 | 2 | 2.5065  | 35.796        | 3.8           |
| 12  | 3 | 0 | 1 | 2.42829 | 36.99         | 0.1           |
| 13  | 1 | 0 | 2 | 2.40012 | 37.44         | 5.1           |
| 14  | 1 | 3 | 1 | 2.33119 | 38.59         | 1.7           |
| 15  | 1 | 1 | 2 | 2.30624 | 39.024        | 0.7           |
| 16  | 2 | 0 | 2 | 2.14739 | 42.043        | 0.9           |
| 17  | 2 | 3 | 1 | 2.09759 | 43.09         | 2.5           |
| 18  | 1 | 2 | 2 | 2.07936 | 43.487        | 18.3          |
| 19  | 3 | 3 | 0 | 1.96269 | 46.217        | 0.2           |
| 20  | 4 | 0 | 1 | 1.92257 | 47.239        | 1.1           |
| 21  | 2 | 2 | 2 | 1.9085  | 47.609        | 1.1           |
| 22  | 4 | 1 | 1 | 1.87329 | 48.561        | 2.4           |
| 23  | 2 | 4 | 0 | 1.86197 | 48.875        | 30.7          |
| 24  | 3 | 3 | 1 | 1.82761 | 49.856        | 0.6           |
| 25  | 3 | 1 | 2 | 1.81551 | 50.211        | 2.8           |
| 26  | 2 | 4 | 1 | 1.74546 | 52.376        | 11.1          |
| 27  | 3 | 2 | 2 | 1.69844 | 53.941        | 4.7           |
| 28  | 0 | 0 | 3 | 1.671   | 54.901        | 0.4           |
| 29  | 1 | 0 | 3 | 1.63834 | 56.091        | 0.7           |
| 30  | 1 | 5 | 0 | 1.63306 | 56.288        | 0.4           |
| 31  | 1 | 1 | 3 | 1.60752 | 57.264        | 1.2           |
| 32  | 4 | 0 | 2 | 1.60144 | 57.502        | 0.7           |
| 33  | 5 | 0 | 1 | 1.58047 | 58.338        | 16.5          |
| 34  | 4 | 1 | 2 | 1.57262 | 58.657        | 4.6           |
| 35  | 1 | 5 | 1 | 1.55275 | 59.483        | 2.1           |
| 36  | 2 | 0 | 3 | 1.55076 | 59.567        | 2.1           |
| 37  | 3 | 3 | 2 | 1.54531 | 59.798        | 1.1           |
| 38  | 1 | 2 | 3 | 1.52455 | 60.698        | 7.5           |
| 39  | 2 | 4 | 2 | 1.49469 | 62.043        | 0.7           |
| 40  | 5 | 2 | 1 | 1.47759 | 62.842        | 0.8           |
|     | 2 | _ | - | 1       | 02.0.2        | 5.0           |

Supplementary Table 2 | The peak list of CaV<sub>4</sub>O<sub>9</sub> (JCPDS: 01-070-4469)

| 42 | 2 | 2 | 3 | 1.45323 | 64.019 | 2.3 |
|----|---|---|---|---------|--------|-----|
| 43 | 3 | 0 | 3 | 1.43159 | 65.105 | 0.7 |
| 44 | 5 | 3 | 0 | 1.42807 | 65.286 | 2.2 |
| 45 | 3 | 1 | 3 | 1.4109  | 66.181 | 6.7 |
| 46 | 5 | 0 | 2 | 1.38713 | 67.465 | 7.5 |
| 47 | 5 | 3 | 1 | 1.37343 | 68.23  | 1   |
| 48 | 3 | 2 | 3 | 1.3538  | 69.36  | 1   |
| 49 | 6 | 0 | 1 | 1.33752 | 70.328 | 0.4 |

| No. | h | k | 1  | d [Å] | 2 Theta [deg] | Intensity [%] |
|-----|---|---|----|-------|---------------|---------------|
| 1   | 0 | 0 | 3  | 5.44  | 16.281        | 55            |
| 2   | 0 | 0 | 6  | 2.714 | 32.977        | 15            |
| 3   | 1 | 0 | 1  | 2.564 | 34.967        | 12            |
| 4   | 1 | 0 | 2  | 2.468 | 36.373        | 20            |
| 5   | 1 | 0 | 4  | 2.183 | 41.325        | 100           |
| 6   | 1 | 0 | 5  | 2.025 | 44.716        | 2             |
| 7   | 1 | 0 | 7  | 1.734 | 52.749        | 12            |
| 8   | 1 | 0 | 8  | 1.603 | 57.441        | 20            |
| 9   | 1 | 1 | 0  | 1.498 | 61.891        | 15            |
| 10  | 1 | 1 | 3  | 1.445 | 64.428        | 5             |
| 11  | 1 | 0 | 10 | 1.378 | 67.973        | 5             |

Supplementary Table 3 | The peak list of NaVO<sub>2</sub> (JCPDS: 00-027-0825)

|     |   |   |   | 0     |               |               |
|-----|---|---|---|-------|---------------|---------------|
| No. | h | k | 1 | d [Å] | 2 Theta [deg] | Intensity [%] |
| 1   | 1 | 1 | 1 | 2.76  | 32.412        | 40            |
| 2   | 2 | 0 | 0 | 2.39  | 37.604        | 100           |
| 3   | 2 | 2 | 0 | 1.69  | 54.233        | 63            |
| 4   | 3 | 1 | 1 | 1.45  | 64.179        | 20            |
| 5   | 2 | 2 | 2 | 1.38  | 67.861        | 20            |
| 6   | 4 | 0 | 0 | 1.2   | 79.87         | 10            |
| 7   | 3 | 3 | 1 | 1.1   | 88.898        | 7             |
| 8   | 4 | 2 | 0 | 1.07  | 92.094        | 25            |

Supplementary Table 4 | The peak list of CaO (JCPDS: 00-001-1160)

| No. | h  | k | 1 | d [Å] | 2 Theta [deg] | Intensity [%] |
|-----|----|---|---|-------|---------------|---------------|
| 1   | -1 | 1 | 1 | 3.31  | 26.914        | 30            |
| 2   | 0  | 1 | 1 | 3.2   | 27.858        | 100           |
| 3   | -1 | 0 | 2 | 2.68  | 33.408        | 30            |
| 4   | -2 | 0 | 2 | 2.43  | 36.963        | 40            |
| 5   | -2 | 1 | 1 | 2.422 | 37.089        | 60            |
| 6   | 2  | 0 | 0 | 2.418 | 37.153        | 30            |
| 7   | -2 | 1 | 2 | 2.139 | 42.215        | 50            |
| 8   | 2  | 1 | 0 | 2.131 | 42.381        | 50            |
| 9   | -1 | 2 | 1 | 2.048 | 44.187        | 10            |
| 10  | 0  | 2 | 1 | 2.022 | 44.786        | 30            |
| 11  | -3 | 0 | 2 | 1.874 | 48.541        | 40            |
| 12  | -1 | 2 | 2 | 1.727 | 52.979        | 20            |
| 13  | -2 | 1 | 3 | 1.657 | 55.404        | 30            |
| 14  | -2 | 2 | 2 | 1.654 | 55.514        | 30            |
| 15  | 2  | 1 | 1 | 1.65  | 55.66         | 60            |
| 16  | -1 | 1 | 3 | 1.615 | 56.975        | 10            |

Supplementary Table 5 | The peak list of VO<sub>2</sub> (JCPDS: 00-009-0142)

## Supplementary Note 1.

## The formation mechanism of low-crystalline structure with large amounts of cavities of the CVO-450 nanowires

To explore the formation mechanism of the low crystalline structure with large amounts cavities of the CVO-450 nanowires, TG/DTG analysis was performed on the unsintered nanowire samples at Ar atmosphere. The weight loss before 200 °C in the TG curve should be due to the evaporation of the physically absorbed water. From 200 to 450 °C, the weight loss was calculated as 6.2% (Supplementary Fig. 4), which was speculated to arise from the evaporation of crystal water in the samples.

XRD and FT-IR measurements were further performed on the samples after different sintering conditions (Supplementary Fig. 5). XRD results show that the strong peak at about 11° for the unsintered samples vanished gradually as the sintering temperature increase. Notably, the sample prepared at 400 °C is basically an amorphous state. When the temperature increases to 450 °C for 8h, the sample recrystallizes and forms low crystalline CaV<sub>4</sub>O<sub>9</sub> (CVO-450). From FT-IR spectra, the stretching vibration and bending vibration of H<sub>2</sub>O were clearly observed for the sample before annealing, but disappeared for the annealed sample at 450 °C for 8 h, consistent well with the XRD results. Based on the TG/DTG, XRD and FT-IR results, the formation mechanism of the low crystalline structure together with the cavities of CVO-450 nanowires was proposed as illustrated in Supplementary Fig. 6. The unsintered sample is a layered structure with the  $Ca^{2+}$  and  $H_2O$  molecules distributed in the interlayers. As the sintering temperature increases, the H<sub>2</sub>O molecules gradually evaporate, which leads to the formation of cavities. Meanwhile, the loss of H<sub>2</sub>O molecules in the interlayers results in the collapse of the layered structure and the decrease of the crystallinity. When the sintering condition was set at 450 °C for 8h, almost all the H<sub>2</sub>O molecules evaporate and the structure recrystallizes to form low crystalline CaV<sub>4</sub>O<sub>9</sub> nanowires (CVO-450). When the temperature increases to 550 °C, the higher temperature push the diffusion of the atoms (mass transfer process) to form a stable crystal phase, leading to the higher crystallinity and the closure of the cavities together with the irregular morphology of CVO-550.