Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017.

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.201700247

KTi₂(PO₄)₃ with Large Ion Diffusion Channel for High-Efficiency Sodium Storage

Jinzhi Sheng, Chen Peng, Yanan Xu, Haoying Lyu, Xu Xu,* Qinyou An, and Liqiang Mai*

Supporting Information

KTi₂(PO₄)₃ with Large Ion Diffusion Channel for High-Efficient Sodium Storage

Jinzhi Sheng, Chen Peng, Yanan Xu, Haoying Lyu, Xu Xu, * Qinyou An, and Liqiang Mai*

Figure S1. Diagram of crystal structures of NaTi₂(PO₄)₃ and KTi₂(PO₄)₃.

Figure S2. XRD pattern (a) and SEM images (b) of the KTi₂(PO₄)₃ precursor.

Figure S3. Nitrogen adsorption-desorption isotherms of KTP (a), KTP/G (b), KTP/C (c) and the corresponding pore size distribution (insets); (d) BET surface areas of the three samples.

WILEY-VCH

Figure S4. TG-DSC curves of KTP/G (a) and KTP/C (b) obtained in air atmosphere.

Figure S5. TG-DSC curves of the precursor washed by 0 (a) and 5 (b) times.

	КТР	KTP/G	KTP/C
$R_s(\Omega)$	3.363	2.905	1.224
$R_{ct}(\Omega)$	765.8	680.2	516.1

WILEY-VCH

Figure S6. (a) GITT curves of KTP/C in the second cycle; (b) demonstration of a single titration during the GITT measurement; (c) diffusivity versus state of discharge.

Equation S1

$$C = \frac{\frac{1}{3.6} \times n \times F}{M}$$

C ---- Specific capacity;

n ---- Transfer electronic number in a molecular;

F ---- Faraday constant;

M ---- The molecular weight

Equation S2

On the basis of Fick's second law, the diffusion coefficient of Na^+ could be calculated using the equation:

$$\tilde{D}_{Na^{+}} = 4/\pi \left(\frac{m_{B}V_{M}}{M_{B}A}\right)^{2} \left(\frac{\Delta E_{s}}{\tau \left(\frac{dE_{\tau}}{d\sqrt{\tau}}\right)}\right)^{2} (\tau \ll L^{2}/\tilde{D}_{Na^{+}})$$

where L represents the thickness of the electrode material, m_B and M_B are the mass and the molecular weight. V_M is the molar volume of the compound, S represents the active surface areas. τ is the time period of current pulse. $dE_{\tau}/d(\tau^{1/2})$ is the derivative of the voltage change during the current pulse with respect to the charge or discharge time τ . ΔE_s is the change of the steady-state voltage at the end of the relaxation period over a single galvanostatic titration.

WILEY-VCH

Figure S7. XPS spectra and fitting curves of Ti 2p in KTP/C of the charged (a) and discharged (b) state.

Figure S8. Charge-discharge curves (a) and cycling performance (b) of KTP/C under the voltage window of 0.01-1.4 V; charge-discharge curves (c) and cycling performance (d) of KTP/C under the voltage window of 0.01-3.0 V.

Figure S9. XRD pattern (a) and SEM images (b) of NVP/C.

Figure S10. Rate performance of the NVP/C//KTP/C full cell.