

Supplementary Figure 1 | Schematic illustration of the synthesis process of iron oxide hydroxide (FeOOH) nanoparticle anode. FeOOH nanoparticle anode was achieved through a two-step process which involves the hydrothermal growth of iron oxide (α -Fe₂O₃) nanoparticles on carbon fiber cloth (CFC) substrates and subsequent transformation during the electrochemical cycles in the potential range between -1.2 and 0 V *versus* saturated calomel electrode (SCE). The low-crystalline FeOOH nanoparticles remain stable after transformation.

Supplementary Figure 2 | Nitrogen sorption results. The nitrogen adsorption-desorption isotherms of (a) α -Fe₂O₃ electrode and (b) NiMoO₄ electrode. The insets show the corresponding pore size distributions.

Supplementary Figure 3 | SEM images of the FeOOH nanoparticles at different magnifications. Scale bars (a) 5 µm, (b) 500 nm, (c) 500 nm, (d) 500 nm, (e) 200 nm, and (f) 200 nm.

Supplementary Figure 4 | Electrochemical characterization of FeOOH electrode. (a) The galvanostatic charge/discharge curves of FeOOH anode at current densities ranging from 1 to 30 A g^{-1} (mass loading: 1.6 mg cm⁻²). Saturated calomel electrode (SCE) is used as the reference electrode. (b) A plot of areal capacitance of the FeOOH anode as a function of current density (1 to 30 A g^{-1}).

Supplementary Figure 5 | Electrochemical analysis of FeOOH anode at high mass loadings. (a,b) CV and galvanostatic charge/discharge curves at 5.6 mg cm⁻² mass loading level. (c,d) CV and galvanostatic charge/discharge curves at 9.1 mg cm⁻² mass loading level. The quasi-rectangular shape CV curves of the low-crystalline FeOOH anode is still maintained at high-mass loadings, which indicate that the dominant capacitive contribution is still present, hence resulting in excellent electrochemical performance. The CV curves become skewed with increasing mass-loadings and the broad peaks disappear, probably due to the increased ion and electron transport resistance/distance.

Supplementary Figure 6 | (**a**) Specific gravimetric capacitance variation of the FeOOH nanoparticle anode at 1A g⁻¹. As depicted in Supplementary Fig. 6a, the low-crystalline FeOOH nanoparticle anode exhibits specific gravimetric capacitances ranging from 998 – 1092 F g⁻¹ at 1 A g⁻¹ when the mass loading is between 1.4 - 2 mg cm⁻² with an electrode thickness of ~0.35mm (including the current collector). (**b**) Rate capability of the low-crystalline FeOOH nanoparticle anode at different mass loadings. At a high mass loading of 9.1 mg cm⁻², the FeOOH anode retains ~60% of the initial capacitance at 20 A g⁻¹ (1 A g⁻¹ = 716 F g⁻¹; 20 A g⁻¹ = 427 F g⁻¹) (Supplementary Fig. 6b). ~67% of the capacitance is retained in a 1 - 30 A g⁻¹ current density range (1 A g⁻¹ = 827 F g⁻¹; 30 A g⁻¹ = 555 F g⁻¹) at a mass loading of 5.6 mg cm⁻².

Supplementary Figure 7 | **XPS analysis of NiMoO**₄ electrode. (a) Full-scan spectrum. (b, c, d) Core-level XPS spectra of Ni 2p, Mo 3d and O 1s.

Supplementary Figure 8 | Water oxidation and reduction potentials of the FeOOH and NiMoO₄ electrodes in 2 M KOH electrolyte. (a) Discharge curve of low-crystalline FeOOH nanoparticles at the current density of 1.2 A g^{-1} in 2 M KOH electrolyte. (b) CV curve of low-crystalline FeOOH nanoparticles at the scan-rate of 1 mV s⁻¹ in 2 M KOH electrolyte. (c) Hydrogen reduction potential of the low-crystalline FeOOH nanoparticles in 2 M KOH electrolyte. (d) Charge curve of the NiMoO₄ nanowires at the current density of 1 mA cm⁻² in 2 M KOH electrolyte. (e) CV curve of the NiMoO₄ nanowires at a scan rate of 1 mV s⁻¹ in 2 M KOH electrolyte. (e) CV curve of the NiMoO₄ nanowires at a scan rate of 1 mV s⁻¹ in 2 M KOH electrolyte. (f) Water oxidation potential of the NiMoO₄ nanowires at the scan rate of 1 mV s⁻¹ in 2 M KOH electrolyte. The NiMoO₄ electrode works in a potential range (up to 0.5 V) exceeding the theoretical oxygen evolution potential in 2 M KOH (~0.163 V). This may be attributed to the kinetically-sluggish oxygen evolution does not occur at the theoretical potential due to polarization.

Supplementary Figure 9 | Electrochemical characterization of NiMoO₄ electrode. (a) The galvanostatic charge/discharge curves of NiMoO₄ cathode at current densities ranging from 1 to 30 A g^{-1} . SCE, saturated calomel electrode. (b) A plot of areal capacity of the NiMoO₄ cathode as a function of current density (1 to 30 A g^{-1}).

Supplementary Figure 10 | Galvanostatic discharge curves of FeOOH and NiMoO₄ electrodes at 5.5 A g⁻¹ for mass balancing. (a) Galvanostatic discharge curve of the low-crystalline FeOOH nanoparticle anode at 5.5 A g⁻¹. (b) Galvanostatic discharge curve of the NiMoO₄ nanowire cathode.

For a hybrid supercapacitor, the mass balance is determined as follows.

$$Q_c = Q_b \tag{1}$$

$$Q_c = m_c C s_c V_c \tag{2}$$

$$Q_b = m_b C_b \tag{3}$$

Substituting equations 2 and 3 into equations 1

$$m_c C s_c V_c = m_b C_b \tag{4}$$

$$\frac{m_c}{m_b} = \frac{C_b}{Cs_c V_c} \tag{5}$$

Where Q_c is the charge of the capacitor or pseudocapacitive electrode, Q_b is the charge of the battery-type electrode, m_c is the mass of the capacitor or pseudocapacitive electrode, Cs_c is the specific capacitance of the capacitor or pseudocapacitive electrode, V_c is the potential window of the capacitor or pseudocapacitive electrode, m_b is the mass of the battery-type electrode and C_b is the capacity of the battery-type electrode.

Supplementary Figure 11 | Electrochemical characterization of NiMoO₄//FeOOH aqueous hybrid supercapacitor. (a) The specific capacitance of the NiMoO₄//FeOOH HSC calculated based on the galvanostatic discharge curves at 11.25 A g^{-1} as a function of voltage window. (b) Galvanostatic charge/discharge curves of NiMoO₄//FeOOH HSC. (c) Cycling performance of the HSC at a current density of 22.5 A g^{-1} . (d) Nyquist plots of the NiMoO₄//FeOOH hybrid supercapacitor. The EIS was tested over a 0.01 Hz to 10⁵ Hz frequency range at an open-circuit potential with AC amplitude of 5 mV.

Supplementary Figure 12 | Volumetric energy density and power density of the NiMoO₄//FeOOH packaged device. Active electrode materials account for 6.5% of the total weight.

Supplementary Figure 13 | (a) Volumetric capacitance as a function of current density of the NiMoO₄//FeOOH packaged device. (b) Gravimetric energy and power densities of the NiMoO₄//FeOOH packaged device. Active electrode material accounts for 35% of the total weight.

Supplementary Figure 14 | Voltage drops of the NiMoO₄ and FeOOH electrodes as a function of the current density. Inset shows the equation of the fitting lines.

Sample	Rs (Ω, From EIS Simulation)	Rs (Ω, From Potential Drop)	Rct (Ω)	
FeOOH	3.59	3.45	0.59	
FeOOH (after cycling)	4.10	4.51	0.50	
NiMoO4	0.72	0.85	0.15	

Supplementary Table 1 | Resistance values of the NiMoO4 and FeOOH electrodes.

There is an increase in the internal resistance (R_s) of the low-crystalline FeOOH anode after 10000 charge/discharge cycles which may probably be due to the degradation of the electrolyte since there is no loss of active material during cycling.

Supplementary Table 2 | The Rietveld refinement results of the NiMoO₄ and α -Fe₂O₃.

	a (Å)	b (Å)	c (Å)	e ₀	Rwp (%)
NiM0O4	9.566(0)	8.734(0)	7.649(0)	0.00640	6.853
a-Fe ₂ O ₃	9.566(0)	9.566(0)	7.649 (0)	0.00370	6.593

Supplementary Table 3 | Comparison of the electrochemical performance of iron oxide/hydroxides negative electrodes in different aqueous electrolytes.

Fe-Based Electrode	Active Material Mass	Electrolyte	Voltage Range	Specific Capacitance	Capacitance Retention	Cycling Ability	CV Shape
Fe ₂ O ₃ films ^[1]	0.67 mg cm ⁻²	1 M NaOH	0.1 to -0.6 V vs SCE	178 F g ⁻¹ at 5 m Vs ⁻¹	121 F g ⁻¹ at 100 mV s ⁻¹	Not reported	Skewed CV shape
Fe ₃ O ₄ /rGO ^[2]	Not reported	1 M KOH	-0.8 to 0.2 V vs Ag/AgCl	890 F g ⁻¹ at 1 A g ⁻¹	$480~{\rm F~g^{-1}}$ at 5 A g^{-1}	Stable after 10000 cycles	Redox Peaks
Fe ₃ O ₄ /rGO ^[3]	Not reported	1 M LiOH	-1.15 to 0.1 V vs SCE	326 F g ⁻¹ at 0.5 A g ⁻¹	304 F g ⁻¹ at 10 A g ⁻¹	95% after 1000 cycles	Redox Peaks
Fe ₃ O ₄ /CNT composite ^[4]	10 mg cm ⁻²	6 M KOH	-1 to 0 V vs SCE	129 F g ⁻¹ at 2.5 mA cm ⁻²	103 F g ⁻¹ at 40 mA cm ⁻²	9% loss after 500 cycles	Redox Peaks
Fe ₂ O ₃ particles/graphene ^[5]	1 mg cm ⁻²	1 M KOH	-1.15 to -0.3 V vs Hg/HgO	908 F g $^{-1}$ at 2 A g $^{-1}$	622 F g ⁻¹ at 50 A g ⁻¹	75% after 200 cycles	Redox Peaks
Fe ₃ O ₄ /graphene paper ^[6]	Not reported	1 M KOH	-1 to 0 V vs Hg/HgO	368 F g ⁻¹ at 1A g ⁻¹	245 F g ⁻¹ at 5 A g ⁻¹	Stable after 1000 cycles	Quasi- rectangular CV
Fe ₂ O ₃ /C ^[7]	Not reported	2 М КОН	-0.7 to 0.2 V vs Ag/AgCl	315 F g ⁻¹ at 2 mV s ⁻¹	Not reported	88.9% after 1500 cycles	Redox Peaks
Nitrogen-doped graphene/Fe ₂ O ₃ ^[8]	Not reported	1 M KOH	-1.2 to 0 V vs Ag/AgCl	618 F g ⁻¹ at 0.5 A g ⁻¹	350 F g ⁻¹ at 10 A g ⁻¹	56.7% after 5000 cycles	Redox Peaks
Fe ₃ O ₄ particles/rGO ^[9]	Not reported	1 M KOH	-1 to 0.1 V vs Hg/HgO	220.1 F $g^{\text{-1}}$ at 0.5 A $g^{\text{-1}}$	134.6 F g ⁻¹ at 5 A g ⁻¹	Stable for 3000 cycles	Redox Peaks
Amorphous FeOOH ^[10]	1.28 mg cm ⁻²	3 М КОН	-1.1 to -0.3 V vs Ag/AgCl	867.3 F g ⁻¹ at 5 mV s ⁻¹	Not reported	93.3% after 3000 cycles	Skewed CV shape
γ-FeOOH nanosheets ^[11]	0.8-1.8 mg cm ⁻²	1 M Li ₂ SO ₄	-0.8 to -0.1 vs Ag/AgCl	310 F g ⁻¹ at 0.13 A g ⁻¹	219.5 F g ⁻¹ at 12.6 A g ⁻¹	Not reported	Quasi- rectangular CV
Fe ₂ O ₃ QD/FGS ^[12]	2-3 mg cm ⁻²	1 M Na ₂ SO ₄	-1 to 0 V vs Ag/AgCl	347 F g ⁻¹ at 10 mV s ⁻¹	140 F g ⁻¹ at 1600 mV s ⁻¹	Not reported	Quasi- rectangular CV
Fe ₂ O ₃ nanotubes array ^[13]	0.78 mg cm ⁻²	1 M Li ₂ SO ₄	-0.8 to 0 V vs SCE	138 F g ⁻¹ at 1.3 A g ⁻¹	91 F g ⁻¹ at 12.8 A g ⁻¹	88.9% after 500 cycles	Quasi- rectangular CV

Fe-Based Electrode	Active Material Mass	Electrolyte	Voltage Range	Specific Capacitance	Capacitance Retention	Cycling Ability	CV Shape
FeOOH nanoparticles ^[14]	Not reported	1 M Li ₂ SO ₄	-0.85 to -0.1 V vs SCE	148 F g ⁻¹ at 0.5 A g ⁻¹	44 F $\mathrm{g}^{\text{-1}}$ at 20 A $\mathrm{g}^{\text{-1}}$	Not reported	Redox Peaks
FeO _x -carbon nanofoams ^[15]	Not reported	2.5 M Li ₂ SO ₄	-0.8 to 0.2 V vs Ag/AgCl	84 F g ⁻¹ at 5 mV s ⁻¹	Not reported	80% after 1000 cycles	Quasi- rectangular CV
α -Fe ₂ O ₃ nanorods ^[16]	4.3 mg cm ⁻²	3 M LiCl	-0.8 to 0 V vs SCE	64.5 F g ⁻¹ at 10 mV s ⁻¹	22.8 F g ⁻¹ at 400 mV s ⁻¹	95.2% after 10000 cycles	Quasi- rectangular CV
α -Fe ₂ O ₃ /graphene ^[17]	Not reported	1 M Na ₂ SO ₄	-1 to 0 V vs Ag/AgCl	504 F g ^{-1} at 2 mA cm ^{-2}	Not reported	Not reported	Quasi- rectangular CV
Low-crystalline FeOOH nanoparticles ^[this work]	1.6 mg cm ⁻²	2 М КОН	-1.2 to 0 V vs SCE	1066 F g ⁻¹ at 1 A g ⁻¹	796 F g ⁻¹ at 30 A g ⁻¹	91% after 10000 cycles	Quasi- rectangular CV
Low-crystalline FeOOH nanoparticles ^[this work]	9.1 mg cm ⁻²	2 M KOH	-1.2 to 0 V vs SCE	716 F g ⁻¹ at 1 A g ⁻¹	427 F g^{-1} at 20 A g^{-1}	86% after 10000 cycles	Quasi- rectangular CV

Supplementary References

- 1. Kulal, P. M., Dubal, D. P., Lokhande, C. D. & Fulari, V. J. Chemical synthesis of Fe₂O₃ thin films for supercapacitor application. *J. Alloys and Compd.* **509**, 2567–2571 (2011).
- 2. Shi, W. *et al.* Achieving high specific charge capacitances in Fe₃O₄/reduced graphene oxide nanocomposites. *J. Mater. Chem.* **21**, 3422–3427 (2011).
- 3. Qu, Q., Yang, S. & Feng, X. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. *Adv. Mater.* 23, 5574–5580 (2011).
- 4. Guan, D. *et al.* Hydrothermal synthesis of carbon nanotube/cubic Fe₃O₄ nanocomposite for enhanced performance supercapacitor electrode material. *Mater. Sci. Eng.*: *B* **178**, 736–743 (2013).
- Wang, H., Xu, Z., Yi, H., Wei, H., Guo, Z. & Wang, X. One-step preparation of single-crystalline Fe₂O₃ particles/graphene composite hydrogels as high performance anode materials for supercapacitors. *Nano Energy* 7, 86–96 (2014).
- 6. Liu, M. & Sun, J. In situ growth of monodisperse Fe₃O₄ nanoparticles on graphene as flexible paper for supercapacitor. *J. Mater. Chem. A* **2**, 12068–12074 (2014).
- Sethuraman, B., Purushothaman, K. K. & Muralidharan, G. Synthesis of mesh-like Fe₂O₃/C nanocomposite via greener route for high performance supercapacitors. *RSC Adv.* 4, 4631–4637 (2014).
- Ma, Z., Huang, X., Dou, S., Wu, J. & Wang, S. One-pot synthesis of Fe₂O₃ nanoparticles on nitrogendoped graphene as advanced supercapacitor electrode materials. *J. Phys. Chem. C* 118, 17231–17239 (2014).
- 9. Wang, Q., Jiao, L., Du, H., Wang, Y. & Yuan, H. Fe₃O₄ nanoparticles grown on graphene as advanced electrode materials for supercapacitors. *J. Power Sources* **245**, 101–106 (2014).
- 10. Chen, J., Xu, J., Zhou, S., Zhao, N. & Wong, C. P. Amorphous nanostructured FeOOH and Co-Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. *Nano Energy* **21**, 145–153 (2016).
- Chen, Y. C., Lin Y. G., Hsu Y. K., Yen S. C., Chen K. H. & Chen, L. C. Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. *Small* 10, 3803–3810 (2014).
- 12. Xia, H. *et al.* Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. *Adv. Funct. Mater.* **25**, 627–635 (2015).
- 13. Xie, K. *et al.* Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. *Electrochem. Commun.* **13**, 657–660 (2011).
- Long, C., Jiang, L., Wei, T., Yan, J. & Fan, Z. High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. *J. Mater. Chem. A* 2, 16678–16686 (2014).
- Sassin, M. B., Mansour, A. N., Pettigrew, K. A., Rolison, D. R. & Long, J. W. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. ACS Nano 4, 4505–4514 (2010).
- 16. Lu, X. *et al.* Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. *Adv. Mater.* **26**, 3148–3155 (2014).
- 17. Low, Q. & Ho, G. Facile structural tuning and compositing of iron oxide-graphene anode towards enhanced supacapacitive performance. *Nano Energy* **5**, 28–35 (2014).