Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.201600322

Integrated Intercalation-Based and Interfacial Sodium Storage in Graphene-Wrapped Porous $Li_4Ti_5O_{12}$ Nanofibers Composite Aerogel

Chaoji Chen, Henghui Xu, Tengfei Zhou, Zaiping Guo, Lineng Chen, Mengyu Yan, Liqiang Mai, Pei Hu, Shijie Cheng, Yunhui Huang,* and Jia Xie*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting information

Integrated Intercalation-Based and Interfacial Sodium Storage in

Graphene-Wrapped Porous Li₄Ti₅O₁₂ Nanofibers Composite Aerogel

Chaoji Chen, Henghui Xu, Tengfei Zhou, Zaiping Guo, Lineng Chen, Mengyu Yan, Liqiang Mai, Pei Hu, Shijie Cheng, Yunhui Huang* and Jia Xie*

E-mail: xiejia@hust.edu.cn; huangyh@mail.hust.edu.cn

Supplementary method S1: calculation details for the separation of the diffusion-controlled and capacitive-controlled charge contributions

The total current (or charge) of the electrode at a certain potential can be divided into two parts, described as: $i(V) = k_1 v^{1/2} + k_2 v$ and $i(V)/v^{1/2} = k_1 + k_2 v^{1/2}$ (Eq. 1), on the base of the power law relationship of $i = av^{1/2}$ for solid-state diffusion-controlled processes and i = av for non-diffusion limited (capacitive-controlled) processes. The current values at a certain potential can be determined by the cyclic voltammograms at various scan rates of 0.1–100 mV s⁻¹. By plotting curves of $i(V)/v^{1/2} vs. v^{1/2}$ (vvaries from 0.1 to 100 mV s⁻¹), the values of k_1 (intercept) and k_2 (slop) at a certain potential can be determined according to Eq. 1. When the series k_1 and k_2 values at different potentials are quantified, the values of $k_1v^{1/2}$ and k_2v at a fixed scan rate (v) can be determined, thus the diffusion-controlled ($k_1v^{1/2}$) and capacitive-controlled (k_2v) currents are separated.

Figure S1. TEM images for the PLTO nanofibers.

Figure S2. XRD patterns for the PLTO and G-PLTO products.

Figure S3. Raman spectrum for the G-PLTO composite aerogel.

Figure S4. TG curve for the G-PLTO composite aerogel. The carbon content is quantified to ~20% based on the TG measurements.

Table S1.Comparisons of Ti-based, carbon-based and P-based anodes in sodium-ion batteries

	Material name	Safety	Capacity (mAh g ⁻¹)	Cycling durability	Theoretical investigation	Sources
	Li ₄ Ti ₄ O ₁₂	good	175 at 0.1C ^a	50	Yes	Ref. 1
	C-coated Li ₄ Ti ₅ O ₁₂	good	160 at 0.5C	50	No	Ref. 2
	Nano-Li ₄ Ti ₄ O ₁₂	good	150 at 0.1C	none	Yes	Ref. 3
	Porous Li ₄ Ti ₅ O ₁₂	good	150 at 0.1C	100	No	Ref. 4
	Na-Doped Li ₄ Ti ₅ O ₁₂	good	160 at 0.1C	800	No	Ref 5
	$L_4T_5O_{12}$ -Ti O_2	good	148 at 1C	400	No	Ref. 6
	C-coated TiO ₂	good	168 at 0.5C	100	No	Ref. 7
Ti-based anodes	NaTiO ₂	good	150 at 0.1C	50	Yes	Ref. 8
	Carbon/TiO ₂	good	160 at 0.1 C	100	No	Ref. 9
Safety: good	TiO ₂ @C nanospheres	good	139 at 0.3 C	500	Yes	Ref. 10
Capacity: Low	TiO ₂ /graphene	good	170 at 1C	4300	Yes	Ref. 11
Cyclability: good	Sodium titanate-CNT	good	100 at 1C	3500	No	Ref. 12
- ,	NaTi ₂ (PO ₄) ₂ -graphene	good	120 at 0.5C	1000	No	Ref. 13
	TiO ₂ -B	good	145 at 0.1C	75	No	Ref. 14
	C-coated TiO ₂ nanotube	good	170 at 0.1C	70	No	Ref 15
	TiO_2 -coated Na $Ti_2(PO_4)_2$	good	96 at 0.2C	10,000	No	Ref 16
	G-PLTO composite	good	~200 at 0.2C	12,000	Ves	This
	G TETO composite	5004	200 00 0120	12,000	105	work
	N-doped carbon fiber	inferior	134 at 200 mA g ⁻¹	200	No	Ref 17
	N-doped carbon sheets	inferior	$190 \text{ at } 200 \text{ mA g}^{-1}$	260	No	Ref 18
	N-doped activated porous	inferior	$200 \text{ at } 200 \text{ mA g}^{-1}$	100	No	Ref 19
	carbon fiber	menor	200 at 200 mm rg	100	110	Ref. 17
	N/O-co-doped carbon	inferior	100 at 100 mA g ⁻¹	80	No	Ref. 20
	carbon nanosheet	inferior	300 at 50 mA g^{-1}	200	No	Ref. 21
Carbon-based	Nancellular carbon foam	inferior	$150 \text{ at } 50 \text{ mA } \text{g}^{-1}$	200	No	Ref 22
anodes	Sulfur-doped graphene	inferior	$280 \text{ at } 50 \text{ mA g}^{-1}$	100	No	Ref. 22
anoues	Nitrogen doned hollow	inferior	230 at 50 mA g	500	No	$\mathbf{Ref.} 23$
Safety: inferior	carbon spheres	menor	220 at 100 IIIA g	500	NO	Kel. 24
Capacity: medium	Nitrogen-doped carbon	inferior	280 at 50 mA g^{-1}	200	No	Ref. 25
Cyclability: medium	nanofibers					
	Nitrogen-containing mesoporous carbons	inferior	220 at 70 mA g^{-1}	100	No	Ref. 26
	Nitrogen-doped carbon sheets	inferior	210 at 100 mA g ⁻¹	600	No	Ref. 27
	Expanded graphite	inferior	91 at 200 mA g ⁻¹	2000	No	Ref. 28
	N/S-codoped carbon	inferior	$280 \text{ at } 30 \text{ mA g}^{-1}$	3400	Yes	Ref 29
	microsphere	menor	200 at 50 ming	2100	105	101.2)
	Red P-carbon	medium	1890 at 143 mA g ⁻¹	30	No	Ref 30
	Amorphous P	medium	$1800 \text{ at } 250 \text{ mA } \text{g}^{-1}$	140	No	Ref 31
P-hased anodes	P-granhene	medium	$1700 \text{ at } 520 \text{ mA g}^{-1}$	60	No	Ref 32
i suscu allouts	Black P-graphite	medium	$1750 \text{ at } 2.6 \text{ A } \text{g}^{-1}$	100	No	Ref 33
Safety: medium	P nanoparticle_graphene	medium	$2000 \text{ at } 0.5 \text{ A } \text{ a}^{-1}$	150	No	Ref 21
Canacity: high	sn.PC	medium	2000 at 0.5 Ag 850 at 50 m Å g ⁻¹	150	No	Ref 25
Cyclability: inferior	51141 3-C FaD	medium	$420 \text{ at } 50 \text{ mA g}^{-1}$	100	No	Ref 36
Cyclability: inferior	C:D	medium	+20 at 50 IIIA g	40	No	Ref 37
	Volk_shell Sn.P_@C	medium	$650 \text{ at } 200 \text{ mA g}^{-1}$	400	No	Ref 38

^a $1C = 175 \text{ mA g}^{-1}$

Figure S5. Sodium storage performance of the PLTO electrode: (a) rate performance at various C-rates, (b) cycling performance at 0.2 C after the rate performance test in a, and (c) long-term cycling performance at 3 C for 500 cycles.

Figure S6. Sodium storage performance of the GA (graphene aerogel) electrode: (a) rate performance at various C-rates, (b) cycling performance at 3 C for 200 cycles (1 $C = 175 \text{ mA g}^{-1}$).

The capacity of the G-PLTO composite aerogel is contributed by two components: the graphene framework and the PLTO nanofibers, as described as: $C_{(G-PLTO \text{ composite aerogel})} = 0.2*C_{(graphene in the composite)} + 0.8*C_{(PLTO in the composite)}$ (Eq. 2). Assuming that the capacity values of the graphene framework in the G-PLTO composite are the same as the graphene aerogel in Figure S6a, the capacity contributions of the graphene framework in the composite at various C-rates can be calculated by $0.2*C_{(graphene in the composite)}$, demonstrated by 30, 24, 22, 18, 15, 11.6, 7 and 5 mA h g⁻¹ at 0.2, 0.6, 1.2, 3, 6, 12, 30, and 60 C, respectively (see Table S2). As the capacity values of the G-PLTO composite have also been determined (Figure 4a), the capacity contributions of the PLTO nanofibers can be quantified by $0.8*C_{(PLTO in the composite)} = C_{(G-PLTO composite aerogel)} - 0.2*C_{(graphene in the composite)}$ according to Eq. 2, as listed in Table S2. Based on the above analysis, the capacities delivered by the PLTO nanofibers in the composite (that is, capacities calculated basing on the PLTO

nanofibers) can be determined as $C_{(PLTO in the composite)} = [C_{(G-PLTO composite aerogel)} - 0.2*C_{(graphene in the composite)}]/0.8, demonstrated by 212.5, 195, 153.75, 121.35, 81.25, 58, 41.25 and 37.5 mA h g⁻¹ at 0.2, 0.6, 1.2, 3, 6, 12, 30, and 60 C, respectively. Therefore, we can conclude that the capacity of the G-PLTO composite is mainly contributed by the PLTO nanofibers with minor from the graphene frameworks.$

Table S2. Capacity contributions from the graphene and PLTO components in the G-PLTO composite aerogel (unit: mA h g^{-1} , 1 C = 175 mA g^{-1})

Contribution\C-rate	0.2C	0.6C	1.2C	3C	6C	12C	30C	60C
$C_{(G-PLTO\ composite\ aerogel)}$	200	180	145	115	80	58	40	35
$C_{(graphene in the composite)}$	150	120	110	90	75	58	35	25
$0.2 * C_{(graphene in the composite)}$	30	24	22	18	15	11.6	7	5
$C_{(PLTO in the composite)}$	212.5	195	153.75	121.25	81.25	58	41.25	37.5
$0.8*C_{(PLTO in the composite)}$	170	156	123	97	65	46.4	33	30

Figure S7. EIS spectra for the G-PLTO and PLTO electrodes.

Figure S8. *In-situ* EIS spectra for the G-PLTO electrodes during the initial discharge-charge cycle at a current rate of 0.2 C.

Figure S9. Structure stability of the G-PLTO electrode after 10,000 discharging-charging cycles: (a) TEM image, (b) HR-TEM image, (c) SAED pattern,(d) STEM image and (e) the corresponding EDX spectra.

References

- [1] Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, *Nat. Commun.* **2013**, *4*, 1870.
- [2] K.-T. Kim, C.-Y. Yu, C. S. Yoon, S.-J. Kim, Y.-K. Sun, S.-T. Myung, Nano Energy 2015, 12, 725.

- [3] X. Yu, H. Pan, W. Wan, C. Ma, J. Bai, Q. Meng, S. N. Ehrlich, Y. Hu, X. Yang, *Nano Lett.* 2013, 13, 4721.
- [4] G. Hasegawa, K. Kanamori, T. Kiyomura, H. Kurata, K. Nakanishi, T. Abe, Adv. Energy Mater. 2015, 5, n/a.
- [5] F. Zhao, P. Xue, H. Ge, L. Li, B. Wang, J. Electrochem. Soc. 2016, 163, A690.
- [6] L. Y. Yang, H. Z. Li, J. Liu, S. S. Tang, Y. K. Lu, S. T. Li, J. Min, N. Yan, M. Lei, J. Mater. Chem. A 2015, 3, 24446.
- [7] K. T. Kim, G. Ali, K. Y. Chung, H. Yashiro, Y.-K. Sun, J. Lu, K. Amine, S.-T. Myung, *Nano Lett.* 2014, 14, 416.
- [8] D. Wu, X. Li, B. Xu, N. Twu, L. Liu, G. Ceder, *Energy Environ. Sci.* 2015, 8, 195.
- [9] A. Henry, N. Louvain, O. Fontaine, L. Stievano, L. Monconduit, B. Boury, *ChemSusChem* 2016, 9, 264.
- [10] D. Su, S. Dou, G. Wang, Chem. Mater. 2015, 27, 6022.
- [11] C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, *Nat. Commun.* 2015, 6, 6929.
- [12] J. Liu, M. N. Banis, B. Xiao, Q. Sun, A. Lushington, R. Li, J. Guo, T.-K. Sham, X. Sun, J. Mater. Chem. A 2015, 3, 24281.
- [13] C. Wu, P. Kopold, Y. Ding, P. A. van Aken, J. Maier, Y. Yu, ACS Nano 2015, 9, 6610.
- [14] L. Wu, D. Bresser, D. Buchholz, S. Passerini, J J. Electrochem. Soc. 2015, 162, A3052.
- [15] D. Bresser, B. Oschmann, M. N. Tahir, F. Mueller, I. Lieberwirth, W. Tremel, R. Zentel, S. Passerini, J. Electrochem. Soc. 2015, 162, A3013.
- [16] J. Yang, H. Wang, P. Hu, J. Qi, L. Guo, L. Wang, Small 2015, 11, 3744.
- [17] Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, Y. Huang, Carbon 2013, 55, 328.
- [18] H. Wang, Z. Wu, F. Meng, D. Ma, X. Huang, L. Wang, X. Zhang, ChemSusChem 2013, 6, 56.
- [19] L. Fu, K. Tang, K. Song, P. A. Aken, Y. Yu, J. Maier, Nanoscale 2014, 6, 1384.
- [20] H. Song, N. Li, H. Cui, C. Wang, Nano Energy 2014, 4, 81.
- [21] J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E. Lotfabad, B. C. Olsen, D. Mitlin, ACS Nano 2013, 12, 11004.
- [22] Y. Shao, J. Xiao, W. Wang, M. Engelhard, X. Nie, M. Gu, L. V. Saraf, G. Exarhos, J. Zhang, J. Liu, *Nano Lett.* 2013, 13, 3909.
- [23] X. Wang, G. Li, F. Hassan, J. Li, X. Fan, R. Batmaz, X. Xiao, Z. Chen, *Nano Energy* 2015, 15, 746.
- [24] K. Zhang , X. Li, J. Liang, Y. Zhu, L. Hu, Q. Cheng, C. Guo, N. Lin, Y. Qian, *Electrochim. Acta* 2015, 155, 174.
- [25] J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Carbon 2015, 94, 189.
- [26] Z. Guan, H. Liu, B. Xu, X. Hao, Z. Wang, L. Chen, J. Mater. Chem. A 2015, 3, 7849.
- [27] F. Yang, Z. Zhang, K. Du, X. Zhao, W. Chen, Y. Lai, J. Li, Carbon 2015, 91, 88.
- [28] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun. 2014, 5, 4033.
- [29] D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, Adv. Energy Mater. 2016, DOI: 10.1002/aenm.201501929.
- [30] Y. Kim, Y. Park, A. Choi, N. S. Choi, J. Kim, J. Lee, J. H. Ryu, S. M. Oh, K. T. Lee, Adv. Mater. 2013, 25, 3045.
- [31] J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, Angew. Chem. 2013, 125, 4731.

- [32] J. Song, Z. Yu, M. L. Gordin, S. Hu, R. Yi, D. Tang, T. Walter, M. Regula, D. Choi, X. Li, *Nano Lett.* 2014, 14, 6329.
- [33] J. Sun, G. Zheng, H.-W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, Y. Cui, *Nano Lett.* 2014, 14, 4573.
- [34] L. Pei, Q. Zhao, C. Chen, J. Liang, J. Chen, ChemElectroChem 2015, 2, 1652.
- [35] J. Qian, Y. Xiong, Y. Cao, X. Ai, H. Yang, Nano Lett. 2014, 14, 1865.
- [36] W.-J. Li, S.-L. Chou, J.-Z. Wang, H.-K. Liu, S.-X. Dou, Chem. Commun. 2015, 51, 3682.
- [37] D. Duveau, S. S. Israel, J. Fullenwarth, F. Cunin, L. Monconduit, J. Mater. Chem. A 2016, 4, 3228.
- [38] J. Liu, P. Kopold, C. Wu, P. A. van Aken, J. Maier, Y. Yu, Energy Environ. Sci. 2015, 8, 3531.