Supporting Information

Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries

Xuanpeng Wang, Xiaoming Xu, Chaojiang Niu*, Jiashen Meng, Meng Huang, Xiong Liu, Ziang Liu, Liqiang Mai* State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Email: mlq518@whut.edu.cn; niuchaojiang11@whut.edu.cn

Key words: Interconnected nanowires, K-ion full batteries, Fe/Mn-based layered oxide, high-capacity, superior cycling stability, *in situ* X-ray diffraction

EXPERIMENTS

Synthesis of Interconnected K_{0.7}Fe_{0.5}Mn_{0.5}O₂ Nanowires and K_{0.7}Fe_{0.5}Mn_{0.5}O₂ Particles

The polyvinylpyrrolidone (PVP) (4.0 g, K-30, M_w =40000), CH₃COOK (3.5 mmol), iron(III) acetylacetonate (2.5 mmol) and manganese(II) Acetyllacetonate (2.5 mmol) were mixed in deionized water (40 mL) at 25 °C for 8 h. When the solution was obtained, it was then delivered into a metallic needle at a constant flow rate of 0.4 mL h⁻¹, and the nanowiress were obtained through electrospinning method with a high voltage of 21.0 kV. The obtained product was then sintered at 300 °C in air for 2 h (2 °C min⁻¹), and sintered at 800 °C in argon for 8 h (5 °C min⁻¹) to obtain interconnected K_{0.7}Fe_{0.5}Mn_{0.5}O₂ nanowires. As control experiments, the K_{0.7}Fe_{0.5}Mn_{0.5}O₂ particles were obtained by directly sintering in the same condition, without electrospinning. Soft carbon was prepared by pyrolysis PTCDA (Perylene-3,4,9,10-tetracarboxylic dianhydride) in a tube furnace at 900 °C for 10 h (4 °C min⁻¹) under argon atmosphere.¹⁷

Material Characterization

In situ X-ray diffraction (XRD) experiment during electrochemical testing of battery was performed on a Bruker D8 Discover X-ray diffractometer with a non-monochromated Cu K α X-ray source scanned at 20 ranges of 17.0–46.0°. For *in situ* XRD measurement, the electrode was placed right behind an X-ray-transparent beryllium window which also acts as a current collector. The *in situ* XRD signals were collected using the planar detector in a still mode during the charge/discharge processes, and each pattern took 200 s to acquire. Cathodes were obtained with 70% active material, 20% acetylene black and 10% PVDF (using N-methyl-2-pyrrolidone solvent by weight). The reference electrode was K metal (99.5%, Sigma-Aldrich). A 0.8 M KPF₆ solution in a mixed solvent of ethylene carbon/dimethyl carbonate (1:1 w/w) was used as the electrolyte; a whatman glass microfiber filter paper (grade GF/F) was used as the separator.

The cathode was cut into square slices with an area of ~ 0.49 cm^2 and a thickness of ~0.1 mm. The loading mass of the active material was approximately 1.4–1.6 mg cm⁻².

Powder XRD measurements were performed to obtain the crystallographic information using a Bruker D8 Discover X-ray diffractometer equipped with a non-monochromated Cu Kα X-ray source. Field-emission scanning electron microscopy (FESEM) images were collected using a JEOL-7100F microscope. Energy-dispersive X-ray spectroscopy (EDS) was performed using an Oxford EDS IE250. Transmission electron microscopy (TEM) and high-resolution TEM was conducted on a JEOL JEM-2100F STEM/EDS microscopy. TG-DSC was performed on a STA-449C. Raman spectra were obtained using a Renishaw INVIA micro-Raman spectroscopy system.

Electrochemical Measurements

The electrochemical measurements were carried out by using 2016 coin cells, which were assembled in a glove box filled with pure argon gas, and used K metal (99.5%, Sigma-Aldrich) as the reference electrode, A 0.8 M KPF₆ in a mixture of ethylene carbon/dimethyl carbonate (1:1 w/w) as electrolyte; a whatman glass microfiber filter (Grade GF/F) as the separator. Cathodes were composed of 70% active material, 20% acetylene black, and 10% PVDF (using N-methyl-2-pyrrolidone as a solvent) in weight. The cathodes and anodes were cut into square slice with ~ 0.49 cm² in area and ~ 0.1 mm in thickness. The loading of cathode and anode materials are approximately $1.4-1.6 \text{ mg cm}^{-2}$ and $1.8-2.0 \text{ mg cm}^{-2}$, respectively. Before assembly full cell, the soft carbon electrode and metal potassium were putted together directly, and 4-6 drops electrolyte was covered on the soft carbon electrode plate, keeping 60-70 seconds in an argon-gas-filled glove box. Galvanostatic charge/discharge tests of cathode and anode were performed at potential range from 1.5 to 4.0 V and from 0.01 to 1.5 V vs. K⁺/K using a multichannel battery testing system (LAND CT2001A), respectively. The GITT test for interconnected K_{0.7}Fe_{0.5}Mn_{0.5}O₂ nanowires at a current density of 6.7 mA g^{-1} using a multichannel battery testing system (LAND CT2001A). The full cells were performed at a potential range of 0.5–3.5 V vs. K⁺/K using a multichannel battery testing system (LAND CT2001A). Cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) were conducted using an electrochemical workstation (CHI600E and Autolab PGSTAT 302N).

Calculation of the K-ion Diffusion Kinetics

$$I_{p} = 0.4463nFAC(\frac{NFvD}{RT})^{1/2} = [269000 \times n^{3/2}ACD]v^{1/2}$$
(1)

Here I_p is the peak current, *n* is the number of electrons transferred per molecule during the electrochemical reaction (here 1), *A* is the active surface area of the electrode (here $3.752 \times \pi \text{ mm}^2$), *C* is the concentration of K-ions in the cathode (here 1), *D* is the apparent K-ions diffusion coefficient of the whole electrode involving the diffusion of both K-ions and electrons, and *v* is the scanning rate.

Figure S1. Schematic illustration of interconnected K_{0.7}Fe_{0.5}Mn_{0.5}O₂ nanowires formation.

Figure S2. XRD patterns of the precursor of interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires and $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles presintered at 300 °C.

Table 1. ICP test results of interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires and $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles sintered at 800 °C, respectively.

Figure S3. (A, B) SEM images of the interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires presintered at 300 °C. (C, D) SEM images of $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles pre-sintered at 300 °C.

Figure S4. SEM images (A, B) and EDS mapping (C) of $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles sintered at 800 °C.

Figure S5. (A) TGA curves and Raman spectra (B) of interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires and $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles sintered at 800 °C, respectively.

Figure S6. The nitrogen adsorption-desorption isotherms (A) and pore size distribution (B) of the interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires. The nitrogen adsorption-desorption isotherms (C) and pore size distribution (D) of the $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles.

Figure S7. Cycling performance (A) and corresponding Coulombic efficiency (B) of interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires and $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles at 100 mA g⁻¹, respectively.

Figure S8. Charge-discharge curves of $K_{0.7}$ Fe_{0.5}Mn_{0.5}O₂ particles at 100 mA g⁻¹.

Figure S9. Cyclic performance of interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires and $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles at 200 mA g⁻¹.

Figure S10. (A) CV curves of interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires in the electrochemical window of 1.5–4.0 V at different scan rates. (B) Cycling response of interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires analyzed by the Randles-Sevick equation. (C) CV curves of $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles in the electrochemical window of 1.5–4.0 V at different scan rates. (D) Cycling response of $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles analyzed by the Randles-Sevick Equation.

Figure S11. (A) AC impedance plots of interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires and $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles before cycling (from 0.1Hz to 100 kHz). (B) AC impedance plots of interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires and $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles after 60 cycles at 100 mA g⁻¹ (from 0.1Hz to 100 kHz).

Figure S12. (A, B) SEM images of interconnected $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ nanowires after 60 cycles at 100 mA g⁻¹ in K-ion batteries. (C, D) SEM images of $K_{0.7}Fe_{0.5}Mn_{0.5}O_2$ particles after 60 cycles at 100 mA g⁻¹ in K-ion batteries.

Figure S13. XRD pattern (A) and Raman spectra (B) of soft carbon sintered at 900 °C in argon for 10h. (C, D) SEM images of soft carbon.

Figure S14. Electrochemical performances of soft carbon. (A) Charge/discharge curves of soft carbon in the electrochemical window of 1.5–4.0 V at 100 mA g^{-1} . (B) Cyclic performance and the corresponding Coulombic efficiency of soft carbon at 100 mA g^{-1} . (C) Rate performance of soft carbon at various rates ranging from 100, 200, 500, 1000 and return to 100 mA g^{-1} . (D) Charge/discharge curves of soft carbon at various current densities.

Figure S15. Charge/discharge curves of the full cell at various current densities in K-ion full batteries.

Active materials	Voltage ranges (V)	Current density (mA g ⁻¹)	Initial capacity (mAh g ⁻¹)	Cycle numbers	Capacity retention	System
		20	178	45	70%	
Interconnected $K_{0.7}$ Fe _{0.5} Mn _{0.5} O ₂ Nanowires	1.5–4.0	100	114	60	89%	Non-aqueous
Half Cells		200	94	45	94%	
(This Work)		500	79	200	85%	
		1000	68	450	87%	
Nickel Hexacyanoferrate Nanoparticle Half Cells ¹⁴	0.3–1.0	500	50	1000	98.25%	Aqueous
Prussian Green (KFe ^{III} Fe ^{II} (CN) ₆) Half Cells ¹⁶	0–1.0	111	140	20	87.9%	Aqueous
3,4,9,10-perylene-tetracarboxylicacid-dianhydride(PTCDA) Half Cells ¹⁷	1.5–3.5	10	130	200	70%	Non-aqueous
$K_2C_6O_6$	1.0–3.2	40	212	_	_	Non-aqueous
Half Cells ²⁶		1000	171	_	_	
Interconnected K _{0.7} Fe _{0.5} Mn _{0.5} O ₂ Nanowires/Soft Carbon	0.5–3.5	40	82	50	75%	Non-aqueous
Full Cells		100	50	100/250	85%/76%	
(This Work)						
K ₂ C ₆ O ₆ /K ₄ C ₆ O ₆ Full Cells ²⁶	0.5–2.0	25	75	10	60%	Non-aqueous

Table S2. Comparison of the electrochemical performances of some cathode materials in K-ion batteries or K-ion full batteries.