Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.

ADVANCED ENERGY MATERIALS

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.201401963

Nanoflake-Assembled Hierarchical Na₃V₂(PO₄)₃/C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism

Qinyou An, Fangyu Xiong, Qiulong Wei, Jinzhi Sheng, Liang He, Dongling Ma, Yan Yao,* and Liqiang Mai*

Supporting Information

$Nanoflake-assembled\ Hierarchical\ Na_3V_2(PO_4)_3/C\ Microflowers:\ Superior\ Li\ Storage\ Performance\ and\ Insertion/Extraction\ Mechanism$

Qinyou An^{\ddagger} , Fangyu Xiong[‡], Qiulong Wei, Jinzhi Sheng, Liang He, Dongling Ma, Yan Yao* and Liqiang Mai*

Figure S1. The FESEM images of (a) NVP-650, (b) NVP-850, (c) precursor without glucose and (d) sample without glucose after annealing at 750 °C.

Figure S2. The TEM image of NVP-750.

Figure S3. The TEM images of NVP-650 (a, b) and NVP-850 (c, d).

Figure S4. The FESEM images of precursors with different reaction time: (a) 1 min; (b) 5 min (c) 10 min and (d) 20 min.

Figure S5. XRD patterns of (a) precursor; (b) NVP-650 and NVP-750; (c) NVP-850 and (d) the sample without adding any glucose annealed at 750 $^{\circ}$ C.

Peaks	(012)	(104)	(113)	(024)	(211)	(300)
FWHM (NVP-650)	0.345	0.499	0.557	0.541	0.901	0.293
FWHM (NVP-750)	0.284	0.450	0.499	0.495	0.805	0.282

Table S1. The FWHM of several main XRD peaks of NVP-650 and NVP-750.

Figure S6. The Raman spectrum of the sample without adding any glucose and annealed at 750 °C.

Figure S7. The Nitrogen adsorption-desorption isotherms and corresponding pore size distribution (inset) of (a) NVP-650 and (b) NVP-850.

Figure S8. AC-impedance spectra of NVP-650, NVP-750 and NVP-850.

Figure S9. The cycling performance of the sample (without adding any glucose; annealed at 750 °C) measured at 0.91 C in the voltage range of 1- 4.3 V.

Figure S10. The rate performance of NVP-750 in different voltage windows in comparison of the report work (Ref 1, Ref 2, Ref 3 and Ref 4).

Reference

[1] W. X. Song, X. B. Ji, C. C. Pan, Y. R. Zhu, Q. Y. Chen, C. E. Banks, *Phys. Chem. Chem. Phys.* **2013**, *15*, 14357.

[2] W. X. Song, X. B. Ji, Y. B. Yao, H. J. Zhu, Q. Y. Chen, Q. Q. Sun, C. E. Banks, *Phys. Chem. Chem. Phys.* **2014**, *16*, 3055.

[3] K. Du, H. W. Guo, G. R. Hu, Z. D. Peng, Y. B. Cao, J. Power Sources 2013, 223, 284.

[4] Z. L. Jian, W. Z. Han, Y. L. Liang, Y. C. Lan, Z. Fang, Y.-S. Hu, Y. Yao, *J. Mater. Chem. A*, DOI: 10.1039/C4TA04630G.

Figure S11. The XRD pattern of the NVP-750 after soaking in 1 M LiPF₆/EC+DMC electrolyte for 12 h.