Small Micro

Supporting Information

for Small, DOI: 10.1002/smll.202205855

Ni Single Atoms on MoS₂ Nanosheets Enabling Enhanced Kinetics of Li-S Batteries

Chenxu Dong, Cheng Zhou, Yan Li, Yongkun Yu, Tianhao Zhao, Ge Zhang, Xinhui Chen, Kaijian Yan, Liqiang Mai,* and Xu Xu*

Supporting Information

Ni single atom on MoS₂ nanosheets enabling enhanced kinetics of Li-S batteries

Figure S1. (a-b) The SEM images of Ni-MoS₂ nanosheets.

Figure S2. (a-b) The SEM images of MoS₂ nanosheets.

Figure S3. The elemental mappings of Ni-MoS₂ nanosheets.

Figure S4. (a-b) The TEM images of MoS_2 nanosheets.

Figure S5. The XPS spectra of MoS_2 , Ni-MoS₂: (a) Mo 3d spectra of Ni-MoS₂, as well as (b) Mo 3d spectra of MoS_2 and (c) Ni 2p spectra.

Figure S6. Raman spectra of the Ni-MoS₂ nanosheets and MoS₂ nanosheets.

Figure S7. (a-b) The SEM images of the surface of pristine PP separator.

Figure S8. Digital photographs of the Ni-MoS₂@PP separator (on the left) and PP separator (on the right) before and after 120°C for 24h.

Figure S9. The electrochemical impedance spectroscopic (EIS) spectra of symmetric batteries assembled with different separators.

Figure S10. Galvanostatic charging/discharging performance of Li-S batteries with different separators at 0.2 C.

Figure S11. Galvanostatic charge-discharge profiles of the Li-S batteries with Ni-MoS₂@PP separator at different rates in a potential window from 1.7 to 2.8V.

Figure S12. Galvanostatic charge-discharge profiles of the Li-S batteries with (a) MoS₂@PP separator and (b) PP separator at different rates in a potential window from 1.7 to 2.8V.

Figure S13. The electrochemical impedance spectroscopic (EIS) spectra of Li-S battery assembled with different separators.

Figure S14. (a-b) SEM images of the surface of Ni-MoS₂@PP after 20 cycles.

Figure S15. Shuttling tests with a double-L device for the Ni-MoS₂@PP separator and the pristine PP separator.

Figure S16. UV-vis spectra of the Li_2S_6 solution mixed with different samples, the inset is the photograph of sealed vials after adsorption.

Figure S17. Potentiostatic discharge profiles of Li_2S_6 solution at 2.05 V for the nucleation and dissolution of Li_2S on the Ni-MoS₂ and MoS₂ electrodes.

Figure S18. TGA curve of sulfur content with normal sulfur loading (a) and high sulfur loandig (b).

Figure S19. Top view of the optimized configurations for the binding of long-chain Li₂S_n to MoS₂.

Figure S20. Top view of the optimized configurations for the binding of long-chain Li_2S_n to Ni-MoS₂.

Table S1. Detailed information of Li-S batteries fabricated with metal sulfide/single atom modified separators.

Metal sulfide / Single atom	Areal sulfur loading (mg cm ⁻²)	High sulfur loading (mg cm ⁻²)	Maximum capacity (mAh g ⁻¹)	Rate capacity (mAh g ⁻¹)	Fading rate (%)		Ref.
					Low rate	High rate	•
W/NG	1.1	8.3	1389 (0.2 C)	678 (10 C)	0.10 (0.5 C)	0.05 (2 C)	[1]
Co ₉ S ₈	2	5.6	1385 (0.1 C)	428 (2 C)	0.07 (0.1 C)	0.01 (1 C)	[2]
COS2/NSCNHF@C	1.2	2.04	1284.5 (0.1 C)	522 (2 C)	0.48 (0.5 C)	0.20 (1 C)	[3]
CNF/CoS/KB	1.8	-	1500 (0.1 C)	650 (2 C)	0.12 (0.5 C)	0.08 (1 C)	[4]
CoS@g-C ₃ N ₄	1.5	4	1290 (0.2 C)	690 (2 C)	0.08 (0.5 C)	0.03 (1 C)	[5]
Co ₉ S ₈ /CoO	1	2.5	1201 (0.02 C)	536 (5 C)	-	0.05 (1 C)	[6]
B/2D MOF-Co	1.5	7.8	1112 (0.1 C)	478 (5 C)	0.13 (0.5 C)	0.07 (1 C)	[7]
Mn-N-C	1.2	4.91	1596 (0.1 C)	581 (2 C)	0.05 (0.5 C)	0.05 (1 C)	[8]
NiS ₂	1	-	1515 (0.2 C)	801 (2 C)	0.07 (0.5 C)	0.07 (2 C)	[9]
Fe@NG	1.1	-	1616 (0.1 C)	820 (2 C)	0.07 (0.2 C)	0.02 (2 C)	[10]
MoS_2	-	-	1471 (0.1 C)	550 (1 C)	0.08 (0.5 C)	-	[11]
MoS ₂ /graphene	0.8-1.2	-	1642 (0.12 C)	600 (5 C)	0.56 (0.12 C)	0.13 (1.2 C)	[12]
Ni-MoS ₂	2.5	7.5	1329 (0.2 C)	677 (3 C)	0.15 (0.5 C)	0.01 (2 C)	This work

Reference

[1] Wang, P.; Xi, B.; Zhang, Z.; Huang, M.; Feng, J.; Xiong, S. Atomic Tungsten on Graphene with Unique

Coordination Enabling Kinetically Boosted Lithium–Sulfur Batteries. Angew. Chem. Int. Ed. 2021, 60, 15563-15571.

- [2] He, J.; Chen, Y.; Manthiram, A. Vertical Co₉S₈ hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. *Energy Environ. Sci.* 2018, 11, 2560-2568.
- [3] Wang, J.; Cai, W.; Mu, X.; Han, L.; Wu, N.; Liao, C.; Kan, Y.; Hu, Y. Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries. *Nano Res.* 2021, 14, 4865-4877.
- [4] Yang, Y.; Wang, S.; Zhang, L.; Deng, Y.; Xu, H.; Qin, X.; Chen, G. CoS-interposed and Ketjen blackembedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries. *Chem. Eng. J.* 2019, 369, 77-86.
- [5] Liu, X.; Wang, S.; Duan, H.; Deng, Y.; Chen, G. A thin and multifunctional CoS@g-C₃N₄/Ketjen black interlayer deposited on polypropylene separator for boosting the performance of lithium-sulfur batteries. *J. Colloid Interface Sci.* 2022, 608, 470-481.
- [6] Wang, N.; Chen, B.; Qin, K.; Liu, E.; Shi, C.; He, C.; Zhao, N. Rational design of Co₉S₈/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption-electrocatalysis function. *Nano Energy*. 2019, 60, 332-339.
- [7] Li, Y.; Lin, S.; Wang, D.; Gao, T.; Song, J.; Zhou, P.; Xu, Z.; Yang, Z.; Xiao, N.; Guo, S. Single Atom Array Mimic on Ultrathin MOF Nanosheets Boosts the Safety and Life of Lithium–Sulfur Batteries. *Adv. Mater.* 2020, 32, 1906722.
- [8] Qiao, S.; Lei, D.; Wang, Q.; Shi, X.; Zhang, Q.; Huang, C.; Liu, A.; He, G.; Zhang, F. Etch-evaporation enabled defect engineering to prepare high-loading Mn single atom catalyst for Li-S battery applications. *Chem. Eng. J.* 2022, 442, 136258.
- [9] Wang, J.; Xu, J.; Tang, W.; Niu, D.; Zhao, S.; Hu, S.; Zhang, X. Infixing NiS₂ nanospheres into a threedimensional rGO/CNTs-Li carbon composite as superior electrocatalyst for high-performance Li-S batteries. *ChemNanoMat.* **2020**, 6, 976-983.
- [10] Cao, G.; Wang, Z.; Bi, D.; Zheng, J.; Lai, Q.; Liang, Y. Atomic-Scale Dispersed Fe-Based Catalysts Confined on Nitrogen-Doped Graphene for Li-S Batteries: Polysulfides with Enhanced Conversion Efficiency. *Chem. – Eur. J.* 2020, 26, 10314-10320.
- [11] Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J.; Sin, H.; Li, L.; Tang, Z. MoS₂ / Celgard Separator as Efficient Polysulfide Barrier for Long-Life Lithium-Sulfur Batteries. *Adv. Mater.* 2017, 29, 1606817.
- [12] Guo, P.; Liu, D.; Liu, Z.; Shang, X.; Liu, Q.; He, D. Dual functional MoS₂/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. *Electrochimica Acta*. **2017**, 256, 28-36.