Supporting Information

Defect Engineering of Hierarchical Porous Carbon Microspheres

for Potassium-ion Storage

Xin-Fei Wu, Zi-Jian Li, Jin-Xiao Liu, Wen Luo*, Jean-Jacques Gaumet, Li-Qiang Mai

X.-F. Wu, W. Luo*, L.-Q. Mai

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.

Z.-J. Li, J.-X. Liu, W. Luo*, L.-Q. Mai

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.

J.-J. Gaumet

Laboratoire de Chimie et Physique: Approche Multi-échelles, des Milieux Complexes (LCP-A2MC), Institut Jean Barriol, Université de Lorraine, Metz 57070, France

W. Luo*

Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China.

Xin-Fei Wu and Zi-Jian Li contributed equally to this work.

Corresponding Authors

* E-mail: <u>luowen_1991@whut.edu.cn</u>

Fig. S1 SEM images of a $CH_3C_6H_4SO_3Fe$, b the broken S-CM-900 under high resolution, c

the partial enlargement of **b**

Fig. S2 FT-IR spectra of CH₃C₆H₄SO₃Fe and S-CMs

Fig. S3 a Full-spectrum XPS survey, b C 1s, c O 1s, d S 2p XPS spectra of S-CM-500

Fig. S4 a Full-spectrum XPS survey, b C 1s, c O 1s, d S 2p XPS spectra of S-CM-900

Fig. S5 a S 2p and b O 1s XPS spectra of S-CM-700

Fig. S6 a SEM and b TEM images of S-CM-700 anodes after 220 cycles at 50 mA g^{-1}

Fig. S7 a CV curves at 0.1 mV s⁻¹, b charge–discharge profiles at a current density of 100 mA g⁻¹ of S-CM-500; c CV curves at 0.1 mV s⁻¹, d charge–discharge profiles at a current density of 100 mA g^{-1} of S-CM-900

Fig. S8 The GITT profiles and the corresponding K⁺ diffusion coefficients of a S-CM-500 and **b** S-CM-900

RARE METALS

Fig. S9 a Equivalent circuit of S-CMs after cycles; c nyquist impedance plots after 1 cycle of S-CMs

RARE METALS

Sample name	C [atom %]	O [atom %]	S [atom %]	S/O
S-CM-500	77.93	17.98	4.09	0.23
S-CM-700	84.20	10.50	4.37	0.42
S-CM-900	86.96	9.91	3.13	0.32

Description of S-CMs

Table S2 Resistance value of S-CM-700 anodes after different cycles

Component	Original	10th	20th	50th
$R_{SEI}^{}/\Omega$	0	298.9	299.6	300.1
$R_{ct}^{}/\Omega$	1569	1099	945	803

Table S3 Resistance value of different samples after 1 cycle

Component	S-CM-500	S-CM-700	S-CM-900
$R_{SEI}^{}/\Omega$	322	203	221
$R_{ct}^{}/\Omega$	1220	1074	1252