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Abstract Owing to adjustable microstructure and

stable physiochemical properties, carbon-based materials

are regarded as promising materials as anodes for potas-

sium-ion batteries (PIBs). Building amorphous structure

and introducing defects are favorable methods to generate

active sites and improve the electrochemical performances

of carbon-based materials. In this work, we develop a facile

carbonization method to prepare sulfur-doped amorphous

carbon microspheres with hierarchical structure and mod-

ulated defects concentration (S-CM-700) for potassium

storage. Benefiting from the special microstructure, S-CM-

700 exhibits the optimal performance and obtains high

reversible capacity of 199.6 mAh�g-1 at 100 mA�g-1,

excellent rate property and prominent durability (0.0055%

capacity decay per cycle during 1800 cycles). Kinetics

analysis and electrochemical characterization are carried

out to reveal that the potassium storage could be boosted by

regulating the defect level, layer spacing and the content of

sulfur-doping. The work provides a general synthesis

approach to prepare sustainable carbon anodes for

advanced PIBs.

Keywords Potassium-ion battery (PIB); Defect

engineering; Amorphous carbon; Hierarchical structure;

Anode

1 Introduction

Lithium-ion batteries (LIBs) are widely utilized for electric

vehicles and portable electronic devices on account of the

outstanding energy density, security, and long working life

[1]. Nevertheless, the insufficient lithium precursor

reserves and high cost arise great attention to explore

sustainable and reliable energy storage technology beyond

LIBs [2]. Therefore, potassium-ion batteries (PIBs), with

similar energy storage principle to LIBs, are promising

alternative to meet these issues. PIBs have attracted

attention for low redox potential and cheap precursor [3, 4].

Moreover, compared with Li? and Na?, K? has the lowest

Lewis acidity, making K? exhibit the least interfacial

reaction resistance, and the highest ionic mobility and ionic

conductivity [5].

Unfortunately, due to the large ionic radius of K? (0.138

vs. 0.068 nm for Li?), the electrodes often suffer volume
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expansion, resulting in poor electrochemical performances

during potassiation/depotassiation process [6]. So far,

many materials have been developed, including carbon-

based materials [7–10], metallic oxides [11], sulfides

[12, 13], organic materials [14, 15] and some compounds

[16–20]. Carbonaceous materials are considered as the

promising and sustainable electrode materials for PIBs,

mainly due to low cost, stable physiochemical properties

and adjustable microstructure [21, 22]. Graphite can react

with K? forming KC8 and along with a theoretical capacity

of 279 mAh�g-1 [23]. However, the small interlayer

spacing of graphite faces failure during K? intercalation/

deintercalation and eventually results in poor cycle life.

Researchers have studied amorphous carbon-based mate-

rials which can adapt well to the volume expansion during

potassiation/depotassiation process due to the larger inter-

layer spacing and result in better electrochemical perfor-

mance. Guo’s group fabricated an amorphous ordered

mesoporous carbon, showing outstanding electrochemical

performance by introducing amorphous mesoporous car-

bon as alternative anode for PIBs [7]. Yang’s group

reported the porous amorphous carbon microspheres

(PCMs) which delivered high capacity and stability due to

large specific surface areas, enlarged interlayer spacings

and structural defects from the amorphous character [8].

Therefore, it is a feasible method to boost the electro-

chemical performance by regulating the crystallinity of

carbonaceous materials.

Meanwhile, with regard to further finely regulating

microstructure of carbonaceous materials, introducing

defects as an effective method has been employed to

modulate the surface properties, electronic structures and

supply more active sites [24–26]. The defects in carbon-

based materials consist of intrinsic defects and extrinsic

defects. Intrinsic defects can be divided into vacancies,

edges and holes, which are associated with the

microstructure. Regulating the preparation of carbon-based

materials is a practical method to modify intrinsic defects,

including pyrolysis, ball-milling and etching, while

extrinsic defects are mostly related to heteroatoms doping

[27]. And the synthesis of defect-enriched carbon-based

materials is usually not controllable [28]. Hence, it is

desirable to develop a facile, controllable and effective way

toward large-scale production of advanced carbon anode

materials for PIBs.

Herein, we report a facile in situ strategy to prepare

amorphous and defect-enriched carbon microspheres with

hierarchical structure for potassium storage via pyrolyzing

the precursor, iron p-toluene sulfonate

((CH3C6H4SO3)3Fe). By defects engineering, the opti-

mized sample (S-CM-700) with abundant mesopores,

plentiful defects and in situ sulfur doping delivers high

reversible capacity, great rate performance and prominent

durability. It is found that the amorphous sulfur-doped

carbon microspheres (S-CMs) with hierarchical structure

support sufficient intrinsic defects and can afford high

activity to boost potassium storage. Meanwhile, the results

show that the content of defects and in situ S-doping affect

the fundamental mechanism of potassiation/depotassiation

reactions. By analyzing the K? kinetics and storage

mechanism of each stage, we provide new insights into the

design of sustainable carbonaceous materials for high-

performance energy storage devices.

2 Experimental

2.1 Preparation of S-CMs

(CH3C6H4SO3)3Fe was purchased from Aladdin and used

without further purification. 2 g (CH3C6H4SO3)3Fe was

calcined at 500, 700 or 900 �C for 2 h under flowing N2

with a heating rate of 5 �C�min-1. The products are,

respectively, named as S-CM-500, S-CM-700 and S-CM-

900, corresponding to the calcination temperatures. The

black-colored products with the solution of 40 ml HCl and

10 ml deionized water were stirred for 1 h. Then, the above

solutions were separated by centrifugation and washed

three times with deionized water and isopropanol, respec-

tively. The final products were obtained after drying in air

atmosphere at 70 �C overnight.

2.2 Materials characterizations

Morphologies of the samples were performed via scanning

electron microscope (SEM, Phenom Pro microscope) and

transmission electron microscope (TEM, JEM-1400).

X-ray diffraction (XRD) was measured by a Bruker D8

Discover X-ray diffractometer with Cu Ka radiation.

Raman characterizations were carried out by HORIBA HR

EVO Raman system. Fourier transform infrared spec-

troscopy (FTIR) spectra were recorded by Perkin–Elmer

spectrum IR Affinity-1 spectrometer. The Tristar II 3020

instrument was utilized to obtain the surface area and pore-

size distribution from nitrogen adsorption at 77 K. The VG

Multi Lab 2000 instrument was employed to collect X-ray

photoelectron spectroscopic (XPS) spectra. And the ele-

mental analysis was measured by Vario EL cube and rapid

OXY cube.

2.3 Electrochemical characterizations

Electrochemical performances of S-CMs were evaluated

using CR2016 coin-type half-cells. The electrodes were

prepared by 80 wt% active materials, 10 wt% acetylene

black and 10 wt% carboxymethylcellulose sodium (CMC).

1 Rare Met.

X.-F. Wu et al.



The mixed slurry was coated on Cu foil and dried at 70 �C
for at least 10 h. The half cells were assembled in the

argon-filled glove box. The counter electrode was potas-

sium foil. And the solution of 0.8 mol�L-1 potassium

hexafluorophosphate (KPF6) in ethylene carbon (EC)/di-

ethyl carbonate (DEC) (1:1 in volume ratio) was utilized as

electrolyte. Besides, the separator was Whatman glass

microfiber (Grade GF/D). Galvanostatic charge–discharge

measurement was performed between 0.01 and 3.00 V (vs.

K?/K) by NEWARE battery testing system. Cyclic

voltammetry (CV) was tested in the voltage range of

0.01–3.00 V (vs. K?/K) via Autolab PGSTAT302N.

Electrochemical impedance spectroscopy (EIS) was eval-

uated by Autolab PGSTAT302 N.

3 Results and discussion

3.1 Morphology and structure

Figure 1 illustrates the synthesis process for the amorphous

carbon microspheres with hierarchical structure. The yel-

lowish-colored (CH3C6H4SO3)3Fe powder is carbonized in

flowing N2 atmosphere at different temperatures to obtain

the black-colored S-CMs (namely S-CM-500, S-CM-700,

and S-CM-900). As shown in Fig. S1a, the precursor

exhibits microspheres with pits and ranges from 5 to

50 lm. The morphology of S-CMs is performed by SEM in

Fig. 2a–c. All three samples represent microspheres with

hierarchical surface structure, which are made of abundant

nanosheets. The unique structure contributes to curtailing

the diffusion path of ion and promoting the transfer of

interfacial charges [29]. After carbonization at 500 �C,
S-CM-500 overall displays a similar microsphere structure

inherited from the precursor. In particular, the two-di-

mensional (2D) nanosheets on the surface have been peeled

off and gradually aligned vertically. In Fig. 2b, at 700 �C,
the skeleton of 3D structure becomes more prominent. And

from Fig. 2d (SEM image of the peripheral edge of S-CM-

700), the nanosheets on the surface are completely aligned

vertically. As illustrated in Fig. 2c, at 900 �C, the structure
of microspheres shrinks and collapses, making it difficult to

maintain the spherical morphology, forming an irregular

polyhedral structure, and some microspheres are collapsed.

For further analyzing the fracture section, Fig. S1b, c

shows that the fracture surface presents jagged dendritic

micron structure. Figure 2e, f shows TEM images of

S-CM-700. It can be observed that the central part of the

microspheres represents solid and dense feature, while the

peripheral edge part of the microspheres is in vertical

growth of nanosheet structure with a relatively thin thick-

ness. In addition, the folded and twisted nanosheet struc-

ture can be clearly seen.

To further characterize the structure of S-CMs, XRD

and Raman spectroscopy were measured. As shown in

XRD patterns (Fig. 3a), the as-synthesized samples display

two broad diffraction peaks at about 20� and 43�, which are

assigned to the crystallographic planes of (002) and (100),

respectively [30, 31]. The two broad diffraction peaks

demonstrate the amorphous structure. According to the

Bragg’s equation, d-spacings (d002) of the as-synthesized

samples are calculated to be 0.408, 0.415, 0.409 nm,

respectively (Table 1). S-CM-700 exhibits the largest

interlayer spacings, and the large interlayer spacing con-

tributes to alleviating volume expansion and maintaining

structural stability during potassiation/depotassiation pro-

cess, which is favorable for the storage of K? [32]. In the

Raman spectra (Fig. 3b), the peaks centered around 1345

and 1600 cm-1 are associated with the defects induced

D-band and the graphite crystallites of carbon generated

G-band, respectively [33]. The area ratio of D-band to

G-band (ID/IG) can be utilized to reflect the disordered

degree and abundance of defects in carbon-based materials

[34–36]. As shown in Table 1, ID/IG of S-CM-500, S-CM-

700, S-CM-900 is 3.23, 2.40 and 1.10, respectively. And

the decreased ratios indicate that the degree of graphiti-

zation increases with the calcination temperature, which is

consistent with XRD results in Fig. 3a. In addition, ID/

(ID ? IG) represents the measure of defects. The values of

S-CM-500, S-CM-700 and S-CM-900 are 0.76, 0.71 and

Fig. 1 Illustration of synthesis process of S-CMs
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0.52, respectively, further confirming that the degree of

graphitization increases and defect level decreases with the

carbonization temperature. This shows that the amorphous

carbon with more defects and disorders, which is obtained

by lower temperature treatment, may be able to serve as

active sites and is expected to provide better electro-

chemical performance [8, 11]. Meanwhile, FTIR

measurement was carried out to investigate the structures.

As present in Fig. S2, after carbonization, most of the

original absorption peaks of (CH3C6H4SO3)3Fe disappear,

and only a weak peak can be displayed at around

1385 cm-1, which is related to the stretching vibrations of

C–S band [5]. It is indicated that during the pyrolysis

process, the original organic groups were decomposed, and

Fig. 2 SEM images of a S-CM-500, b S-CM-700 and c S-CM-900; d SEM image of peripheral edge of S-CM-700; e TEM image of
S-CM-700; f TEM image of peripheral edge of S-CM-700

Fig. 3 a XRD patterns, b Raman spectra, c N2 adsorption–desorption isotherms and (inset) corresponding pore size distribution of
S-CM-500 (orange), S-CM-700 (green) and S-CM-900 (blue); d full-spectrum XPS survey and e C 1s XPS spectra of S-CM-700;
f ratios of C-sp2 and other fitted bonds of S-CMs
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most of S in the sulfonic acid group finally existed in the

carbonized products in the form of C–S bond, which also

confirms the successful in situ doping of sulfur.

To determine the evolution of the surface area and pore

structure, nitrogen adsorption–desorption was surveyed.

According to Fig. 3c, all isotherms display typical Type IV

behavior, demonstrating the mesoporous structure [37].

The Brunauer–Emmett–Teller (BET) surface areas of

S-CM-500, S-CM-700 and S-CM-900 are 303.56, 403.11

and 666.49 m2�g-1, respectively. Since the functional

groups related to heteroatoms such as O and S can enhance

the wettability of carbon, which can significantly improve

the contact area between electrolyte and carbon surface

[38–40], with the increase in calcination temperature and

specific surface area, the active sites (such as defects and

S-rich functional groups) existing on the carbon nanosheets

have been sufficiently exposed, and the potassium-ion

adsorption sites and reaction sites on the surface have been

improved [41]. Figure 3c also displays the pore size dis-

tribution of the three samples. The result reveals that the

pore structure of the three samples is mainly mesoporous,

which is consistent with the curves of nitrogen adsorption–

desorption. The existence of mesopores for S-CM-700 can

accelerate electrolyte infusion, alleviate the volume

expansion and promote the ion transmission efficiency

during the potassiation/depotassiation process [7]. The

large specific surface area and hierarchical porous structure

not only shorten the transport distance of potassium ion,

but also provide multiple active sites for fast potassium

capacitive adsorption [38–40].

To analyze the surface chemical state and chemical

composition, the calcined materials were examined by

XPS. Compared with the survey XPS spectrum of S-CM-

700 in Fig. 3d, all the samples (Figs. S3, S4) exhibit three

elements C, O and S. For C 1s spectra of S-CM-700 in

Fig. 3e, four peaks at 284.6, 285.3, 286.5 and 289.4 eV are

related to C-sp2, C-sp3, C–S and O–C=O bonds [34, 42],

respectively. The C-sp2 bonds are related to the inherent

defects [25], and its ratio to other carbon bonds in Fig. 3f

displays that the amount of its inherent defects gradually

decreases as the calcination temperature increases. The

defect content of S-CM-500 and S-CM-700 is much higher

than that of S-CM-900, which can provide additional K?-

storage sites. The S 2p spectra (Fig. S5a) of S-CM-700

exhibit three peaks corresponding to S 2p3/2 (164.0 eV), S

2p1/2 (165.2 eV) and –C–SO2– (168.9 eV) [43]. The

S 2p3/2 and S 2p1/2 peaks can be divided to thiophene-type

sulfur and the –C–SO2– peak can be assigned to oxidized-

type sulfur [41]. And researchers found that thiophene-type

S can optimize the electronic structure, decrease the

adsorption energy of K? during potassiation/depotassiation

and promote K? diffusion kinetics [43]. For O 1s spectra of

S-CM-700 in Fig. S5b, it can be deconvoluted into O–S at

531.5 eV, along with C=O at 533.1 eV, C–OH at 534.1 eV

and COOH at 535.1 eV [30, 44], respectively. By ele-

mental analysis, S-CM-700 processes the highest S content

and the lowest O content. Besides, the S/O weight ratios of

S-CM-500, S-CM-700 and S-CM-900 are 1.92, 2.79 and

1.47, respectively (Table 1). And the elemental analysis

result is consistent with XPS composition of S-CMs

(Table S1). Some previous studies have confirmed that the

S/O ratio is related to the potassium storage performance

[43, 45]. A higher S/O ratio of S-CM-700 is beneficial to

reduce the side reactions and proportion of irreversible

capacity.

3.2 Potassium-storage performance

The potassium-storage performance of S-CMs has an

intimate relationship with the specific structure at different

temperatures. Figure 4a exhibits the short-term cycling

properties of S-CMs at 100 mA�g-1. The reversible

capacity of S-CM-700 can remain 199.6 mAh�g-1, which

is much higher than those of S-CM-500 (78.2 mAh�g-1)

and S-CM-900 (142.0 mAh�g-1). The initial Coulombic

efficiency (ICE) is calculated to be 33.9% (S-CM-500),

35.4% (S-CM-700) and 24.2% (S-CM-900), respectively.

All the S-CMs demonstrate low ICE, which is associated

with the high specific surface area and oxygen-contained

groups, promoting the formation of solid electrolyte

interphase (SEI) membrane [46, 47]. And this phenomenon

is often observed for carbon-based anode materials in PIBs

[25, 37]. Therefore, S-CM-900 with the largest specific

surface possesses the lowest ICE. After the carbon material

Table 1 Physical properties of S-CMs

Samples d002 / nm ID/IG ID/(ID ? IG) BET surface area / (m2�g-1) Elemental analysis

wC / wt% wH / wt% wO / wt% wS / wt% wS/wO

S-CM-500 0.408 3.23 0.76 303.56 71.10 2.63 7.30 14.04 1.92

S-CM-700 0.415 2.40 0.71 403.11 75.94 2.46 5.08 14.17 2.79

S-CM-900 0.409 1.10 0.52 666.49 79.98 2.43 6.51 9.55 1.47

1Rare Met.
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and its functional groups are stabilized through the acti-

vation process, the Coulombic efficiency (CE) of S-CM-

700 can reach about 100%, always higher than those of

S-CM-500 and S-CM-900 during the cycle process. This

result can be attributed to the side reactions from the excess

oxygen containing functional groups in S-CM-500 (S/O

wt%: 1.92) and S-CM-900 (S/O wt%: 1.47). Besides,

although S-CM-500 reveals the most degree of defects, it

displays disappointed electrochemical performance, which

can be contributed to its smaller layer spacing and more

irreversible reactions from lower S/O ratio. While unde-

sirable electrochemical performance of S-CM-900 is due to

its low defect content, which is incapable to provide suf-

ficient reaction active sites, and the small interlayer spacing

makes it difficult to intercalate large K?. S-CM-700 with

the largest layer spacing, the highest S/O ratio and plentiful

defects provide the highest reversible specific capacity,

which is also verified in Fig. 4b. S-CM-700 delivers

reversible specific capacities of 308.6, 220.5, 176.6, 131.7,

96.7 mAh�g-1 at 50, 100, 200, 500, 1000 mA�g-1, respec-

tively. Moreover, when the current density is restored

100 mA�g-1, S-CM-700 regains reversible specific capacity

of 218.1 mAh�g-1 and the capacity retention is up to 98.9%.

Significantly, S-CM-700 shows outstanding rate perfor-

mance, reversibility and cycling stability. In contrast, for

each current density, the other two anodes display much

lower capacities than S-CM-700. These results indicate

S-CM-700 anodes possess an impressive capacity and great

rate performance. To further understand the excellent K?

storage properties, SEM and TEM images (Fig. S6a, b) of

S-CM-700 anodes have been characterized after 220 cycles

at 50 mA�g-1. As shown in Fig. S6a, b, the hierarchical

microspheres microstructure of S-CM-700 anodes still can

be observed after cycles, revealing the highly reversibility.

Fig. 4 Electrochemical potassium storage performances for anodes: a cycling performance at a current density of 100 mA�g-1, b rate
performances of S-CMs; c CV curves of S-CM-700 at a scan rate of 0.1 mV�s-1; d differential capacity curves of S-CM-700 for the
second and third cycles at a current density of 100 mA�g-1; e electrochemical charge/discharge profiles of S-CM-700 for the first three
cycles at a current density of 100 mA�g-1; f specific capacity at each stage of the second cycle charging process for S-CMs at a
current density of 100 mA�g-1; g long cycling performance at a current density of 1000 mA�g-1 of S-CM-700
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Figures 4c, S7a and S7c reveal CV curves of S-CMs at

0.1 mV�s-1. During the initial potassiation cycle of all

samples, an irreversible peak appears near 0.7 V, which is

related to the irreversible reaction between K? and the

functional groups and the formation of SEI [48]. S-CM-900

has the highest specific surface area, so its irreversible peak

is the most obvious, which is confirmed by its lowest ICE

[49]. In the case of S-CM-700, a pair of reversible redox

CV peaks appear at 0.78 and 1.75 V, corresponding to the

reversible capture of K? at S-containing functional group

sites [43]. The cathodic peak about 0.01 V can be the

intercalation of K? in S-CM-700 [34]. The apparent

overlap in the subsequent CV cycles reflects great

reversibility of S-CM-700.

The potassium-storage mechanism of S-CM-700 can be

explored through the charge–discharge of S-CM-700 at

100 mA�g-1 and their corresponding differential capacity

curves, which can show the decayed intensity and the

increased potential difference of the redox peaks. As shown

in Fig. 4d, S-CM-700 presents two anodic peaks at 0.54

and 1.75 V, related to the dividing line between the dif-

ferent stages of the discharging–charging curves in

Fig. 4e. Based on this, the charging curves can be seg-

mented into three regions, which coincide with three

different stages for the interaction between potassium ion

and anode materials [6, 25, 50]. The potassium storage

mechanisms of S-CM-700 in the three stages are attrib-

uted to K? deintercalation behavior enabled by short

range ordered carbon units (Stage 1), the redox reaction

between K? and S-containing functional groups (Stage 2),

as well as the desorption of K? from mesopores and

defects (Stage 3), respectively [25]. The capacity com-

parison provided by different stages is intuitively shown

in Fig. 4f. S-CM-700 has excellent potassium storage in

each stage, which is related to its appropriate defect

concentration, the largest layer spacing and moderate

specific surface area. Specifically, S-CM-900 treated

under the highest carbonization temperature has the most

short-range ordered carbon micro-regions, so the capacity

provided in Stage 1 is higher than that of S-CM-500 [7].

However, since the layer spacings of S-CM-500 and

S-CM-900 are smaller than that of S-CM-700, the dein-

tercalation of K? in the two materials is more difficult, so

the electrochemical performance of S-CM-500 and S-CM-

900 is disappointed [32]. S-CM-700 has the highest S

content, so it provides the highest capacity in Stage 2. On

the contrary, S-CM-900 has the lowest S content, so it

shows the lowest capacity for redox reaction with K?.

S-CM-500 has higher defect concentration, so it shows

higher capacity than S-CM-900 in Stage 3, but also worse

than S-CM-700 due to its lower specific surface area and

smaller layer spacing [25]. As shown in Figs. 4e, S7b and

S7d, the charge–discharge curves show the same voltage

platform for S-CMs, indicating the potassium-storage

mechanism of mesoporous carbon is similar.

In order to further test the cycle stability of S-CM-700 at

high current density, the long-term cycling test was mea-

sured at 1000 mA�g-1 (Fig. 4g). The reversible capacities

of the 10th and 1800th cycles are 125.6 and 113.1

mAh�g-1, respectively. After the activation process, S-CM-

700 presents excellent durability and a high-capacity

retention of 90.1%, which means that it shows only

0.0055% capacity decay in each cycle. Therefore, S-CM-

700 exhibits an excellent stable reversibility.

For distinguishing the charge storage mechanism, the

kinetics and electrochemical reaction of K? in S-CM-700

were further investigated. A series of CV measurements

were performed at different scan rates from 0.2 to

1.0 mV�s-1 (Fig. 5a). At different scanning rates, the redox

peaks of CV curves have no obvious distortion, indicating

that the polarization effects are weak [51]. The current (i)

and scan rate (v) can be expressed by the formular [52]:

i ¼ avb ð1Þ

where a and b are constants. According to the above for-

mula, the slope b-value can directly reflect the control

factors of K? storage. The b-value close to 1 corresponds a

surface capacitive-controlled process. And it can be

described as a diffusion-limited process when the b-value

is close to 0.5 [52]. By employing the maximum (peak)

current, the b-values calculated from the anode peaks and

cathode peaks of S-CM-700 are 0.87 and 0.91, respectively

(Fig. 5b), indicating that the K? storage is controlled not

only by surface capacitive-controlled process, but also by

diffusion-limited process. The defects and S-rich functional

groups introduced by S atoms on the carbon surface bring

additional adsorption sites, so as to strengthen the capaci-

tance control process and help to accelerate the electro-

chemical reaction kinetics [51, 53–55].

Figures 5c, S8 exhibit the K? diffusivity (DKþ ) of S-

CMs by galvanostatic intermittent titration technique

(GITT). The DKþ of S-CMs can be calculated by Fick’ s

second law [56], and that of S-CM-700 is from

2.06 9 10–12 to 3.42 9 10–10 cm2�s-1. The samples at all

temperatures have high DKþ , indicating that S-CMs present

fast K?-diffusion kinetics [37]. Figure 5d shows EIS

curves of S-CM-700 anodes at different cycles. And the

corresponding equivalent circuit diagram is analyzed in

Fig. S9a [57, 58]. As shown in Table S2, after several

cycles, the resistance of SEI film (RSEI) remained at a

stable value, representing the stability of SEI membrane,

which can enhance the transfer of K? in the electrolyte and

electrode interface [44]. Meanwhile, the charge transfer

resistance (Rct) becomes lower, improving the charge

transfer of potassium ion [41]. And in Fig. S9b, EIS

measurements of S-CMs after one cycle were also
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operated, and equivalent circuit diagram and resistance

value are analyzed in Fig. S9a and Table S3, respectively.

Obviously, S-CM-700 shows the lowest RSEI and Rct,

which is conducive to kinetics of potassium-ion transmis-

sion, consistent with its remarkable electrochemical

performance.

4 Conclusion

To sum up, low-cost precursor (iron p-toluene sulfonate)

was carbonized in one step, and S-CMs microspheres with

hierarchical structure were obtained. The as-synthesized

S-CM-700 has plentiful defects, the largest layer spacing,

the richest sulfur content and moderate specific surface

area. The excellent potassium-storage performance of

S-CM-700 is coincided with its specific structure. Specifi-

cally, as the anode of PIBs, S-CM-700 presents great

reversible capacity (199.6 mAh�g-1 at 100 mA�g-1),

impressive durability (0.0055% capacity attenuation in

each cycle over 1800 cycles) and good rate property.

Further, the capacity contribution dominated by surface

capacitive-controlled was determined. This study provides

an effective way for advanced battery system to develop

excellent carbon-based anode materials.
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