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Supplementary Figure 1. The experimental Mn-O-H Pourbaix diagram generated with aqueous ion concentration of
10 M at 25 °C. The Mn ions concentration of 10* M was selected based on the ICP-OES measurement (Table S2). Regions
with solid are shaded in Lake blue. The water stability window is shown in red dashed line. The experiment data were obtained
from Reference 1.



Supplementary Figure 2. Morphology of Mn7.5010Br3. SEM image of Mn750,0Br3 coated on carbon cloth.
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Supplementary Figure 3. Activity comparison between with iR and without iR compensation. Linear sweep

voltammograms of Mn75010Br3 (a), MngO1oCls (b), and y-MnO; (c) loaded on carbon cloth in 0.5 M H>SO4 with (black line)

and without iR correction (red line).
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Supplementary Figure 4. Material structure. Crystal structure diagram of Mn75010Br3 (a), MngO1oCls (b).
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Supplementary Figure 5. Electrochemical double-layer capacitance measurements. cyclic voltammetry curves of: (a)
Mn75010Br3 from 1.18 to 1.28 V vs. RHE at scanning rates of 2, 4, 6, 8, to 10 mV s, (b) MngO10Cl3 from 1.18 to 1.28 V vs.
RHE at scanning rates of 2, 4, 6, 8, to 10 mV s’ (¢) y-MnO; from 1.18 to 1.28 V vs. RHE at scanning rates of 2, 4, 6, 8, to
10 mV s, (d) The fitting plots showing Cai for Mn7.5010Br3, MnsO;0Cls and y-MnOx.
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Supplementary Figure 6. OER stability test of MngQ1¢Cls. Chronopotentiometry curves obtained from MngO19Clz with

a constant current density of 10 mA/cm?,
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Supplementary Figure 7. Structural stability. XRD pattern of Mn7500Br3; before (black line) and after (blue line) the

stability test on carbon cloth.
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Supplementary Figure 8. Chronopotentiometry tests of the Mn7s0;0Br; catalyst at 10 mA cm2 on carbon cloth and
FTO. The relatively larger increase of potentials on carbon cloth is likely because of the substrate corrosion under OER

working conditions.
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(213) and (b) (211) of the Mn7.5010Br3 after the stability test.



Supplementary Figure 10. Morphology and elemental composition after the stability test. HAADF-STEM image
(white) and EDS mapping images (magenta of Mn, red of O, and yellow of Br) of the Mn7 5010Br3 after the stability test.
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Supplementary Figure 11. Elemental composition after the stability test of Mn7.5019Brs. Full range XPS spectra of
Mny7.5010Br3 before and after the stability test on carbon cloth.
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Supplementary Figure 12. Mn element after the stability test of Mn7.5010Brs. XPS Mn 2p spectra of Mn75019Br3 after
the stability test on carbon cloth.



4e+06 = Oxygen .’
Fitting curve R
"'

—_ »”

(7] '.o'

>' 3e+06 = ','

= e

N "

©

Q "'

5 ,

2e+06 = »”’

4

© "'

[}) »”°

o »”

’
'I
1e+06 = ’
1 s 1 s 1 s 1
0 1,000 2,000 3,000 4,000

Concentration (ppm)

Supplementary Figure 13. Calibration of Faradaic efficiencies test. Calibration curve for oxygen using gas

chromatography.
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Supplementary Figure 14. Faradaic efficiencies test of Mn75019Brs. Faradaic efficiency of oxygen over 100 min test

using Mn7.5010Brs3.



100 = e

Average FE=96.2 +7.1 %

)
o
1

[2))
=]
1

IS
o
|

Faradaic efficiency (%)

N
o
1

@ Oxygen evolved at 10 mA cm2

T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
Time (min)
Supplementary Figure 15. Faradaic efficiencies test of MngO19Cls. Faradaic efficiency of oxygen over 100 min test

using Mn8010C13.
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Supplementary Figure 16. Faradaic efficiencies test of y-MnQ». Faradaic efficiency of oxygen over 100 min test using y-

MnOs.



Supplementary Figure 17. PEM test system. Photograph of the PEM set-up used in this work. Keep the temperature of

the PEM cell at 50 °C, and inject the pre-heated DI water into the anode at a flow rate of 10 mL min™'.
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Supplementary Figure 18. Average valence state of Mn element of MngO1oCls. Mn(3s) XPS spectrum of the MngOoCls.
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Supplementary Figure 19. Average valence state of Mn element after the stability test of Mn7.5019Brs. Mn(3s) XPS

spectrum of the Mn7.5010Br3 after the stability test on carbon cloth.
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Supplementary Figure 20. XPS of O 1s spectrum before and after OER of MngO1oCls. XPS O 1s spectra of MngOoCl3

compared with MngO1oCl3 after OER.
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Supplementary Figure 21. XPS of O 1s spectrum before and after OER of y-MnQ». High-resolution XPS O 1s spectra

of y-MnO, compared with y-MnO> after OER.
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Supplementary Figure 22. XANES spectra of catalysts. Normalized Mn K-edge XANES spectra of Mn75010Br3,

MngO10Cl3, and reference materials. The inserted image shows a partial enlargement from 6540 eV to 6550 eV.
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Supplementary Figure 23. XANES spectra of MngO19Cl; and other catalysts. Normalized Mn K-edge XANES spectra

of the MngO10Cl3, MngO10Cl3 after the stability test and reference materials.
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Supplementary Figure 24. Dynamic interface of y-MnQ:. In-situ Raman spectra of y-MnOQ catalyst on a carbon cloth in

0.5 M H,S04 electrolyte under different external applied potential (0-1.45 V).
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Supplementary Figure 25. Dynamic interface in H'*0 and H,'°O of Mn75010Brs. In-situ Raman spectra of

Mn75010Br3 under external applied potential (1.25 V)
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Supplementary Figure 26. By-product exclusion of Mn7501Br3. (2) In-situ normalized Raman spectra (based on
the Raman peak area of SO4> around 1052 cm™) of Mn7.5010Br3 catalyst on a carbon cloth in 0.5 M H>SO4
(H»'%0) electrolyte under a circle of external applied potentials (0V, 1.0V, 1.15V, 1.25V, 1.30V, 1.35V, 1.45V,
1.35V, 1.30V, 1.25V, 1.15V, 1.0V, 0V). (b) The normalized Raman intensity (detail in the methods part) of the
stretching mode of Mn-OOH at different potentials (red curve); The current density at constant potential of on

a carbon cloth in 0.5 M H2SO4 (H»'%0) electrolyte under different potentials (black curve).
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Supplementary Figure 27. Stability of MngQ1¢Cls. (a) Calculated Mn-O-Cl Pourbaix diagram generated with aqueous
ion concentrations 107*M at 25°C. The Lake blue color gauges the stability of MnsO1oCls at relevant potential and pH. The
water stability window is shown in red dashed line. (b) Calculated Pourbaix decomposition free energy (AGpbx) of
MngO10Cl; from the potential 1.0-1.8 V vs. RHE at pH = 0. The projection of AGppx onto the potential axis highlights the
stable species at the corresponding regions. Roman numerals are only to index the relevant decomposition products.



Supplementary Discussion

For the activity analysis, we first calculated the surface energies to determine the most energetically favorable surface of the
catalysts studied. Based on the calculated surface Pourbaix diagrams, we determined the adsorbate configuration under the
OER conditions. The binding energies of adsorbed O and HO were then calculated to evaluate the catalytic activity. The
overall procedure is illustrated in Fig. S28. For Mn75010Br; and MngO10Cl3, (101) surfaces were directly selected based on
the HRTEM analysis (Fig. 1). Our calculations indicate that only the O-terminated (101) surfaces of Mn7s0;oBrs and
Mn;sO10Cls are stable, with surface energies of 0.06 and 0.05 eV/ A2, respectively. In terms of y-MnO», since there is no facet
information available from the current experiments or literature, we calculated the surface energies of different possible facets
(Supplementary Table 5). We find that the O-terminated (001) surface yields the lowest surface energy of 0.02 eV/ A2,
compared to the other considered facets. Based on these selected facets, we calculated their surface Pourbaix diagrams by
exhaustively screening the possible binding sites for different adsorbates at various coverages. Interestingly, while y-
MnO»(001) is favorably covered by 0.5 ML H* during OER (Fig. S29a), both Mn75010Br3 and MngO1oCl3 (101) show a
notable self-oxidation process at OER conditions (Fig. S29b-c), with the additional O-coverage of 0.50 and 0.64 ML,
respectively. This results in a more close-packed oxide surface during OER, with most of the hollow- and bridge-sites filled
by additional oxygen with strong O-bonding. Combined with results of bulk Pourbaix analysis, it can be concluded that the
formation of MnOx layer on the surface promotes the long-term stability at operating potentials. On these surfaces identified
from surface Pourbaix analysis, all sites were screened for the calculations of O and HO adsorption free energies.
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Supplementary Figure 28. Activity analysis. Flow chart of the OER activity analysis in this paper consists of surface energy
calculations, surface Pourbaix diagram calculations, and activity analysis based on the most favorable coverage indicated by
the surface Pourbaix diagram analysis. This flow chart describes the analytical procedure of the theoretical sections in this
paper, including the analysis of surface stability, surface state, and activity analysis based on the most favorable surface state
at electrochemical conditions.
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Supplementary Figure 29. Activity analysis. Surface Pourbaix diagram calculations on (a) y-MnO»(001), (b)

MngOmCh(lOl), and (C) Mn7‘5010Br3(101), With a pH Of 0.29.
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Supplementary Figure 30. Activity analysis. Self-oxidation on MngO10Cl3(101) and Mn75010Br3(101) during OER as
indicated by the surface Pourbaix diagram analysis. Purple, red, green, and brown spheres represent Mn, O, Cl, and Br,

respectively.
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Supplementary Figure 31. Activity analysis. The most favorable binding configuration of key OER adsorbate on the
surfaces with the states indicated by the surface Pourbaix diagram analysis. Purple, red, green, brown, and pink spheres
represent Mn, O, Cl, Br, and H, respectively.



Supplementary Table 1. Summary of noble-metal-free OER catalyst performance. The data of Ir-based noble metal-based

catalysts were also collected for reference and shown in italics.

Overpotential Substrate Stability
Catalyst (Electrolyte) (mV at 10 mA cm?) (at 10 mA cm?) Reference
¥-MnO, (H,SO, 0.5M) 413 %5 CcC . This Work
Mn,O,,Cl; (H,SO, 0.5M) 368+ 5 CcC 70 h This Work
500 h on FTO
.S S+ i
Mn, 50,,Br; (H,SO, 0.5M) 29 5 CcC 300 h @ 100 mA cm2in PEM This Work
Ba[Co-POM] (H,SO, 1M) 500 CP 24h @ 250 mV )
Nig sMn, 5Sb, ;0 (H,S0, 1M) 672 +9 ATO 168 h 3)
Pt/Ti/SiO2/Si
Mn-rich rutile Mn,Sb, O, (H,SO, IM) 580 wafer ~30h 4)
Co;0, (H,SO, 0.5M) 570 - 10h Q)
CoFePbO, (H,SO, 0.05M) 700 FTO 10h (6)
Ag-doped Co;0, (H,SO, 0.5M) 470 FTO 10h (7)
C-coated Co,0, (H,SO, 0.5M) 370 CP 86.8 @ 100 mA cm™ (8)
DN gels (InFeCo-CCP) (H,SO, 0.5M) 450 @ ImA cm GCE 3000 cycles ‘l‘:s_fo h@S5mA )
8000 h on FTO
y-MnO, (H,SO, 1M) 428 + 5 CP 12h @ 100 mA cm?in PEM (10)
IrOx/SrirQOs3 (HCIO, 0.1M) 270-290 cw 30h (11)
IrO: (HCIO, 0.1M) 380 GCE - (12)

CC: carbon cloth electrode, CP: carbon paper electrode, GCE: glassy carbon electrode, CW: Copper wire

Notes: NiMnSbOy is stable over 168 hrs, but its overpotential is very large, i.e. more than 2.2 times that of
Mnj75010Brs. The overpotential of y-MnO, increases ca. 80 mV with 8000 hrs operation at 10 mA/cm?. Mns010Br3
exhibits a 44 mV overpotential increase with 500 hrs operation at 10 mA/cm?. The stability test of the Mn75010Br3
catalyst on FTO is still ongoing. In PEM cell stability tests, the y-MnO, catalyst become inactivated after 12 hrs
with a current density of 100 mA/cm? at 25 ° C. In stark contrast, Mnss010Br; exhibits no stability decrease over 12
hrs operation at 100 mA/cm? and 50°C in PEM cell. The ongoing PEM cell testing show that the voltage of

Mn750;0Br3; only increases 124 mV after 300 hrs operation.



Supplementary Table 2. ICP measurement of Mn ions in the electrolyte before and after stability test.

Sample (0.5 M H,SO, Electrolyte) Dissolved manganese
Before stability test 11.88 ppb°©
Mn; s0,0Br; 1.05 ppmd

(after stability test)

Mn; s0,0Br; counter electrode?®

12.82 ppb°©

(after stability test)
MngO44Cls 8.74 ppm

(after stability test)
MngO,,Cl; counter electrode?® 13.28 ppbe

(after stability test)
y-MnO, 6.86 ppm®

(after stability test)

- a

y-MnO, counter electrode 15.20 ppbe

(after stability test)

a: obtained by soaking the counter electrode
b: detected by ICP-OES
c: detected by ICP-MS



Supplementary Table 3. Detailed XPS O 1s data of catalysts before and after OER test.

Sample Mn-O Total Mn-O ratio (%)
Mn, .0, ,Br; before OER 12740.67 22707.21 35447.88 35.94
Mn, (O, ,Br, after OER 14528.76 14485.44 29014.2 50.07
Mng0,,Cl; before OER 20802.25 23946.44 44748.69 46.49
Mng0,,Cl, after OER 10520.2 9021.633 19541.83 53.83
y-MnO, before OER 20806.32 23680.54 44486.86 46.77
y-MnO, after OER 16840.49 18265.25 35105.74 47.97




Supplementary Table 4. Comparison of the OER potentials between experiments and theoretical models at 10 mA/cm?.

Potential @ 10 mA/cm? Mn-O-Br Mn-O-Cl ¥-MnO,
Experiment (V) 1.52 1.60 1.65
Theory (V) 1.74 1.80 1.93
Deviation (V) -0.22 -0.20 0.32




Supplementary Table 5. Calculated surface energies for y-MnO,. Only the stable surfaces after structural relaxation are

shown.

y-MnO; (001)-0 (010)-0 (100)-Mn (100)-0 (110)-0

Surface energy (eV/ A?) 0.02 0.08 0.15 0.15 0.08
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