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ABSTRACT: Composite solid electrolytes (CSEs) hold great promise
toward safe lithium metal batteries with high energy density, due to
integration of the merits of polymer matrixes and fillers. Rational design of
filler nanostructures has attracted increasing attention for improving the ionic
transport of CSEs in solid batteries. In this work, we fabricated open-
structured Li0.33La0.557TiO3 (LLTO) nanotubes (NTs) as ion-conductive
fillers in CSEs by a gradient electrospinning method for the first time.
Different from nanoparticles (NPs) and nanowires (NWs), our nanotubes are
composed of connected small NPs, which offer three-dimensional (3D) Li+-
accessible pathways, large polymer/filler interfacial ionic conduction regions,
and enhanced wettability against the polymer matrix. As a result, the solid
electrolytes based on LLTO NTs and polyacrylonitrile (PAN) can display a high ionic conductivity of up to 3.6 × 10−4 S cm−1 and a
wide electrochemical window of 5 V at room temperature (RT). Furthermore, Li−Li symmetric cells using the LLTO NTs/PAN
CSE can work stably over 1000 h with a polarization of 20 mV. LiFePO4−Li full cells exhibit a high capacity of 142.5 mAh g−1 with a
capacity retention of 90% at 0.5 C after 100 cycles. All of these results demonstrate that the design of open-structured nanotubes as
fillers is a promising strategy for high-performance solid electrolytes.
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1. INTRODUCTION

To meet the increasing demand of the consumer electronics
market, the development of efficient and safe energy storage
equipment has been paid more and more attention.1,2 As the
most common energy storage device, lithium-ion batteries have
been widely studied and used in daily life.3,4 However,
commercial liquid electrolytes have risks of leakage and fire
hazard because of their intrinsic flammability as well as safety
problems caused by lithium dendrite penetration.5 To solve
these problems with liquid electrolytes, it is a promising
strategy to develop novel solid-state batteries with solid
electrolytes.6 Compared with conventional liquid electrolytes,
solid electrolytes can not only realize high-safety batteries
owing to their nonflammability and higher mechanical strength
but also improve the energy density of lithium-ion batteries by
matching lithium metal anodes.7,8 As one of the most common
solid electrolytes, polymer-based solid electrolytes have drawn
increasing attention because of their facile manufacture and
benign contact with electrodes.9,10 Unfortunately, their low
ionic conductivity and poor mechanical properties inhibit their
further application.11 Inorganic electrolytes are another
important class of solid electrolytes is, which usually show
high ionic conductivity and a wide electrochemical stability
window. They have the potential to couple with Li metal and
high-voltage cathodes to improve the energy density of solid

batteries.12,13 However, they are fragile and suffer from poor
interface contact with the electrodes, which needs further
improvement.14−16 To fabricate high-performance solid
electrolytes in terms of high ionic conductivity and benign
contact with electrodes, an effective approach is to prepare
composite solid electrolytes (CSEs), which can integrate the
advantages of polymers and inorganic solid electrolytes.17−19

In comparison with polymer-based solid electrolytes, the
introduction of fillers can generate good interaction with the
polymer matrix, which facilitates the migration of lithium ions
and thus enhances the ionic conductivity in composite solid
electrolytes.20,21 Besides, the addition of fillers can also
effectively improve the thermal performance and mechanical
strength of the CSEs.22 In most reported works, fillers can be
divided into non-Li+-conductive nanoparticles, such as
Al2O3,

23 TiO2,
24 and SiO2,

25 and Li+-conductive nanoparticles,
including LLTO,18 Li7La3Zr2O12,

20 and Li1.3Al0.3Ti1.7(PO4)3.
26
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However, nanoparticles are usually dispersed randomly in solid
electrolytes, making it difficult to form continuous ionic
transport pathways.
Developing rational nanostructured fillers is a brilliant

approach to take full use of their advantages, because it
extends ion transport pathways and improves the interaction
between fillers and the polymer matrix.27,28 A typical one is a
nanowire. Cui groups rationally constructed LLTO nanowires
incorporated in solid electrolytes, which showed enhanced
ionic conductivity.29 This result indicates that fillers with a
one-dimensional structure and a high aspect ratio can provide
long-term and continuous lithium ion transport, forming fast
conductive networks in contrast to randomly dispersed
nanoparticles. Another approach is to introduce pores on the
surface of fillers to improve the wettability against the polymer
matrix.30 The improvement of wettability helps infiltration of
polymer-based electrolytes into the pores to form more
effective interface contact areas with fillers.31 This promotes
the Lewis acid-based interaction between the fillers and
polymer electrolytes, resulting in the adsorption of anions of
Li salts and release of more free Li+, thus remarkably boosting
the ionic conductivity of the CSEs.32 A third approach is to
increase the specific surface area of the fillers to enlarge the
interfacial interaction regions with the polymer matrix, which
plays an important role in the enhancement of the ionic
conductivity.33−35 For instance, a porous SiO2 aerogel was
developed as the filler in a PEO-based electrolyte, and the SiO2
aerogel could provide a large and continuous surface to form
more interfacial regions, thereby facilitating fast Li+ conduction
through the filler/polymer interface.25 Therefore, exploring a
well-designed nanostructure for fillers is an essential direction
to obtain high-ionic-conductivity composite solid electrolytes
for solid-state lithium metal batteries.
In this work, we successfully fabricated open-structured

LLTO nanotubes (NTs) as ion conductors in composite solid
electrolytes by a gradient electrospinning method for the first

time. Compared with nanoparticles and nanowires, these open-
structured nanotubes are composed of connected small
nanoparticles, providing three dimensional (3D) accessible
pathways for lithium-ion transport. Besides, the pores on the
surface improve the interface wettability between LLTO NTs
and the polymer matrix, thus promoting the adsorption of
anions. Apart from this, their large specific surface area
increases interfacial ionic conduction regions in the as-
obtained LLTO NTs/polyacrylonitrile (PAN)PAN CSE.
With the reasonable design of the filler structure, the solid
electrolyte composed of LLTO NTs and PAN achieves an
ionic conductivity of 3.6 × 10−4 S cm−1 at room temperature
(RT) coupled with highly enhanced electrochemical windows
and mechanical strength. This solid electrolyte endows the
assembled lithium symmetric battery with small polarization
and long cycle life over 1000 h at a current density of 0.05 mA
cm−2. Good cycling stability and high rate capacity were also
obtained for full cells with the LLTO NTs/PAN CSE against a
LiFePO4 cathode.

2. EXPERIMENTAL SECTION
2.1. Synthesis of LLTO Nanotubes. Appropriate amounts of

LiNO3, La(NO3)3·6H2O, and Ti(OC4H9)4 were dissolved in
dimethylformamide (DMF) and acetic acid, and then high- and
low-molecular-weight polyvinylpyrrolidone (LPVP) were added. After
rapid stirring for 24 h, a transparent uniform precursor solution was
obtained. Then nanowires were prepared from the precursor solution
by electrospinning and were collected on aluminum foil. Finally, the
as-spun nanowires were heated at different temperatures (700−850
°C) for 2 h in air to fabricate LLTO nanotubes.

2.2. Fabrication of LLTO NTs/PAN CSEs. LiClO4, PAN, and an
appropriate amount of LLTO NTs were dissolved in DMF. After
stirring at 60 °C for 12 h, the well-stirred solution was poured into a
petri dish and dried at 80 °C under vacuum for 12 h to remove the
excess solvent. Finally, the dried film was quickly transferred to a
glovebox for preservation. The detailed experimental procedures,
electrochemical measurements, and characterization are shown in the
Supporting Information.

Figure 1. Material synthesis. (a) Schematic of fabrication procedures of LLTO NTs/PAN CSEs. (b) Schematic of the LLTO NT formation
process.
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3. RESULTS AND DISCUSSION
As depicted in Figure 1a, LLTO NTs were prepared by a
gradient electrospinning method, which is usually used to
synthesize one-dimensional materials with a high aspect
ratio.36 The structure can be tailored by controlling the
polymer composition in the precursor solution. To obtain
LLTO with a nanotube structure, the optimal result was
obtained using 1.5 g low-molecular-weight polyvinylpyrroli-
done (LPVP) and 1.05 g high-molecular-weight polyvinylpyr-
rolidone (HPVP) as polymer carriers in the precursor solution.
Theoretically, a polymer with a higher molecular weight has a
greater viscosity compared with a low-weight polymer, which
shows a wider terminal jet radius in the electrospinning
process.36−38 Therefore, the HPVP was distributed in the outer
layer of the as-spun nanowires and the LPVP mainly located in
the center, thus forming a unique gradient structure. After
electrospinning, the product collected on aluminum foil was
calcined to obtain the final LLTO NTs. Rapid weight loss
occurs over 400 °C in the pyrolysis process (Figure 1b). In this
temperature range, the LPVP located in the center of the as-
spun nanowires decomposed faster because of its higher
decomposition rate than that of HPVP (Figure S1). Then, the
inorganic ingredient of the precursor tended to move toward
the external boundary with the contraction of LPVP, eventually
forming a tubular structure. The pores on the surface were
formed by the decomposition of the inorganic ingredient and
the partial pyrolysis of HPVP. Finally, the obtained LLTO NTs
were dispersed in PAN/LiClO4 to fabricate composite solid
electrolytes.
Figure S2a shows the X-ray diffraction (XRD) patterns of

LLTO nanotubes calcined at different temperatures (700−850
°C). When the calcination temperature exceeds 800 °C, the

diffraction peaks of the as-obtained LLTO NTs are well
indexed to the tetragonal-phase P4/mmm perovskite structure
Li0.33La0.557TiO3 (JCPDS: 01-87-0935).

39 Figure 2a shows the
representative scanning electron microscopy (SEM) images of
LLTO NTs, showing the porous one-dimensional structure
with a high aspect ratio, which can provide continuous and
long-term Li+ transport pathways in the prepared solid
electrolytes. Apart from this, transmission electron microscopy
(TEM) images depicted in Figure 2b indicate the internal
conditions of LLTO NTs, confirming that the fillers with
distinct tubular structure and uniform size were successfully
synthesized. The wall of LLTO NTs was composed of many
small NPs of 30−50 nm in diameter (Figure 2c); the grain
boundaries and pores are marked by yellow lines (Figure 2d).
These NPs connected with each other and formed many pores
and channels among NTs, providing an open structure and
more 3D pathways for lithium-ions to access the extended
interface. These pathways come from interfacial regions in
pores, channels, and both outer and inner sides of LLTO NTs,
which helps to improve the ionic conductivity of the composite
solid electrolytes. These findings can be further confirmed by
specific area tests of the LLTO NTs. The Brunauer−Emmett−
Teller (BET) specific area of LLTO NTs (Figure S3) reached
11.73 m2 g−1, much higher than those of nanoparticles (2.58
m2 g−1) and nanowires (5.30 m2 g−1). Figure 2f shows the
high-resolution TEM (HRTEM) image and selected area
electron diffraction (SAED) pattern of LLTO NTs, in which
measured interplanar distances are 2.72, 2.23, 1.94, and 1.58 Å,
corresponding to the planes of (110), (112), (200), and (212),
respectively. In addition, the corresponding energy dispersive
X-ray spectrometry (EDS) elemental mapping of a single
LLTO nanotube is shown in Figure 2e, revealing that La, Ti,

Figure 2. Structural characterization of LLTO NTs calcined at 800 °C. (a) SEM image. (b) TEM image. (c) TEM image of the head of a nanotube
composed of NPs (i−iv). The yellow lines in (d) represent channels and voids formed among the NPs. (e) EDS elemental mappings of NTs. (f)
HRTEM image and SAED pattern of NTs.
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and O elements are uniformly distributed in this filler. Apart
from this, the SEM images in Figure S4 show as-spun
nanowires and LLTO NTs calcined at 700, 800, and 850 °C
with corresponding average diameters of 242, 162, 140, and
130 nm. In the process of calcination, distinct nanotube
structure is found to form at 700 °C and collapse at 850 °C,
which may be caused by the overgrowth of LLTO grains.
Therefore, with the open structure formed by exceptional
connection of single NPs, the LLTO NT calcined at 800 °C
was an optimal candidate because of its large specific surface
area, high aspect ratio, and open structure, promising for use in
the preparation of composite solid electrolytes and subsequent
experiments.
Figure 3a shows the XRD patterns for PAN, LiClO4, and

LLTO NTs/PAN CSEs containing different concentrations of
LLTO NTs at RT. It is obvious that there is a characteristic
diffraction peak of PAN around 17° and the diffraction peaks
of LiClO4 disappear in PAN-based electrolytes, which may be
caused by its complete complexation with the PAN, indicating
that there is no lithium salt particle remaining in the PAN-
based electrolytes. The relative peak intensity of LLTO NTs/
PAN CSEs shows no significant change with different amounts
of LLTO NTs, suggesting that the addition of LLTO NTs has
no obvious effect on the crystallinity of PAN. The SEM image
of the solid electrolyte with 10 wt % LLTO NTs (10LLTO
NTs/PAN CSE) shows LLTO NTs evenly distributed in the
polymer-based electrolyte without agglomeration (Figure 3b),
which contributes to fast lithium-ion transport. And the cross-
sectional diagram of the 10LLTO NTs/PAN CSE in Figure S5
shows that the average film thickness is 220 μm. The surface
structures and morphologies of the matrix can greatly affect the
wettability of the liquid.40 Based on this fact, the wettability of
LLTO with different structures against polymer electrolytes
was studied by measuring the contact angle (schematically
shown in Figure 3c). As depicted in Figure 3d, the LLTO

nanotubes demonstrate a small contact angle of 33° against the
PAN/LiClO4 electrolyte precursor solution, much smaller than
that of LLTO nanowires (44°), which indicates the better
wettability of LLTO nanotubes against the polymer matrix.
The improvement of wettability is conducive to the
penetration of PAN into the pores and surface of the LLTO
nanotubes and thus to effectively improved contact area
between LLTO NTs and PAN, which promotes the Lewis
acid-base interaction for adsorbing anions and boosts Li+

conductivity in LLTO NTs/PAN CSEs.25,31

Apart from high ionic conductivity, another important
performance parameter of solid electrolytes is their remarkable
mechanical strength, which is essential to suppress the growth
of lithium dendrites and to withstand external mechanical
load.41 The stress−strain test (Figure 3e) shows that the
tensile strength of the LLTO NTs/PAN CSE is 5.61 MPa,
which is much higher than 2.93 MPa of the bare PAN solid
electrolyte. Besides, the strain of the LLTO NTs/PAN CSE
before breaking could reach up to 33%, whereas for the bare
PAN solid electrolyte it was only 12.5%. The results indicate
that the mechanical properties of as-prepared solid electrolytes
can be significantly improved owing to the incorporation of
mechanically robust LLTO NTs, which is key to realizing high-
safety solid-state batteries.42 Furthermore, the thermal stability
of the LLTO NTs/PAN CSE was studied by thermogravi-
metric analysis (TGA). Both LLTO NTs/PAN CSE and bare
PAN solid electrolyte show similar thermodynamic stability in
air before the temperature reaches around 350 °C (Figure S6).
To further test their thermal stability in practical application,
both kinds of solid electrolytes were heated at different
temperatures in a glove box. Digital photographs (Figure S7)
display shape changes of the LLTO NTs/PAN CSE and bare
PAN solid electrolyte before and after 150 °C for 20 min,
demonstrating that the LLTO NTs/PAN CSE can maintain
the same shape, while the bare PAN solid electrolyte appears

Figure 3. Characterization of LLTO NTs/PAN CSEs. (a) XRD patterns of PAN, LiClO4, and LLTO NTs/PAN CSEs with various concentrations
of LLTO NTs. (b) SEM image of the LLTO NTs/PAN CSE. (c) Schematic of contact angle showing the wettability of reinforcements against the
PAN-based polymer electrolyte and (d) the corresponding contact angle of NTs (left) and NWs (right). (e) Stress−strain curves of the LLTO
NTs/PAN CSE and bare PAN solid electrolyte.
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to undergo an obvious shrinkage. Accordingly, the LLTO
NTs/PAN CSE has excellent thermal stability and mechanical
properties, which are beneficial for the safe performance of
solid-state batteries.
The ionic conductivity was characterized by electrochemical

impedance spectroscopy (EIS). Figure 4a shows the EIS curves
of the 10LLTO NTs/PAN CSE at different temperatures. It
can be calculated that its ionic conductivity reaches 3.6 × 10−4

S cm−1 at room temperature, which is three orders of
magnitude higher than that of the bare PAN solid electrolyte
(6.8 × 10−7 S cm−1). Meanwhile, the ionic conductivity of the
10LLTO NTs/PAN CSE (at RT) is also higher than those of
previously reported solid electrolytes with different structures
of LLTO fillers (Table S1), which can be attributed to the
open structure with 3D accessible Li+ transport pathways.
Moreover, as a typical A-site-deficient ion conductor, LLTO
NTs with a larger specific surface area provide more vacancies,
which facilitates the faster hop of lithium ions along their one-
dimensional surface. Apart from this, lithium ion conduction in
composite solid electrolytes is also controlled by polymer/filler
interfacial interaction regions.33,35 Based on Lewis acid-base
theory, a large number of ClO4

− groups are restricted to the
surface of LLTO nanotubes, so that the concentration of free
Li+ at the nanotube/polymer interface can be increased.16,43

Therefore, the large interface regions formed by LLTO NT’s
areas can enable fast ion conduction along the surface regions
of nanotubes, improving the ionic conductivity of the as-
obtained solid electrolyte.
Figure 4b shows the temperature-dependent (20−80 °C)

Arrhenius plots for LLTO NTs/PAN CSEs with different
contents of LLTO NTs, and an improvement of ionic
conductivity could be achieved in all LLTO NTs/PAN CSEs
compared with bare PAN solid electrolyte. After the fitting
analysis for the obtained results, the corresponding activation
energies of LLTO NTs/PAN CSEs with 0−15 wt % LLTO

NTs were 0.31, 0.2, 0.13, 0.16, and 0.23 eV, respectively. The
decreased activation energy indicates that the introduction of
LLTO NTs facilitates Li ion transport in the as-obtained solid
electrolytes. The lowest activation energy of the 10LLTO
NTs/PAN CSE indicates that 10 wt % LLTO NTs in the
PAN-based electrolyte is the optimal amount for the transport
of lithium ions. This result is consistent with the test in Figure
S8, which shows that the conductivity of solid electrolytes
increases with the addition of LLTO NTs, reaching the peak at
10 wt %, and begins to rapidly decline at 15 wt %. Apart from
ionic conductivity, good electrochemical stability is also an
important factor for the application of CSEs in solid-state
batteries. To investigate this parameter, linear sweep
voltammetry (LSV) testing results of the 10LLTO NTs/
PAN CSE at the scan rate of 0.01 mV s−1 are shown in Figure
4c. Compared with the bare PAN solid electrolyte, the
introduction of LLTO NTs improves the electrochemical
stability of the 10LLTO NTs/PAN CSE up to 5 V, which
holds great potential to match high-voltage cathodes for higher
energy density. The improved electrochemical stability can be
attributed to the high electrochemical stability of LLTO NTs.
Moreover, impurities such as water may be removed from the
polymer matrix by the LLTO ceramic nanotubes, which is
beneficial to enhance the electrochemical window of LLTO
NTs/PAN CSEs.44,45 According to Figure 4d, the Li+

transference number (tLi
+) of the 10LLTO NTs/PAN CSE

is 0.38, which is higher than those of the bare PAN solid
electrolyte (tLi

+ = 0.15 in Figure S9) and PAN-based
composite solid electrolytes with LLTO nanowires (tLi

+ =
0.26 in Figure S9). The enhanced tLi

+ could be attributed to
the LLTO NT’s ceramic phase and the large nanotube/
polymer interfacial interaction regions, which enable sufficient
free lithium ions to reach electrodes.
Galvanostatic cycling was used to test the durability of the

10LLTO NTs/PAN CSE (Figure 5a) and the bare PAN solid

Figure 4. Electrochemical performance of the LLTO NTs/PAN CSEs. (a) EIS profiles of the 10LLTO NTs/PAN CSE at different temperatures.
(b) Arrhenius plots of LLTO NTs/PAN CSEs with different concentrations of LLTO NTs. (c) Linear sweep voltammetry (LSV) curves of the
10LLTO NTs/PAN CSE and bare PAN solid electrolyte. (d) Current-time profile for the 10LLTO NTs/PAN CSE (the inset shows EIS variation
before and after polarization).
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electrolyte (Figure S10). The symmetric Li−Li battery with
the 10LLTO NTs/PAN CSE shows a long-term stable
operation over 1000 h with a small polarized voltage within
0.02 V, which is much lower than 0.5 V of the bare PAN solid
electrolyte (within 200 h). Figure S11 shows the voltage profile
of Li/10LLTO NTs/PAN CSE/Li under different current
densities. The assembled Li−Li symmetric cell is stable and the
overpotential value varies linearly with the current density.
This fact demonstrates that the 10LLTO NTs/PAN CSE can
effectively suppress the uneven Li deposition and the
formation of Li dendrites so that few lithium dendrites existed
on the lithium metal surface after cycling (Figure S12), which
could be attributed to a synergistic effect between uniformly
distributed LLTO NTs and enhanced mechanical properties of
the 10LLTO NTs/PAN CSE.
The practical applicability of the 10LLTO NTs/PAN CSE

was demonstrated by assembling full cells based on Li metal
and LiFePO4 (LFP) with the 10LLTO NTs/PAN CSE. To
improve the contact between the solid electrolyte and the
electrodes, a small amount of liquid electrolyte (∼4 μL cm−2)
was added to the electrolyte/electrode interfaces to reduce the
interface resistance. Figure 5b presents the cycling performance
of the Li−LFP battery between 2.8 and 4.0 V at 0.5 C, showing
a stable discharge capacity of 142.5 mAh g−1 and maintaining
90% after 100 cycles. Apart from this, the discharge-specific

capacities are about 164.8, 159.8, 141.5, 115.5, and 72.2 mAh
g−1 at 0.1, 0.2, 0.5, 1, and 2 C, respectively (Figure 5c,d). The
initial value of capacity can be approached again as the rate
returns to 0.1 C, which further proves the reversibility and
stability of this solid-state battery. In addition, the 10LLTO
NTs/PAN CSE also shows great stability when applied to a Li-
NCM811 battery between 3.0 and 4.3 V at 0.5 C (Figure S13).

4. CONCLUSIONS

In summary, unique open-structured LLTO NTs were
successfully prepared by a gradient electrospinning strategy
as fillers in solid electrolytes. Different from nanoparticles and
nanowires, our nanotubes are composed of connected small
NPs and form many pores and channels among them. The as-
obtained solid electrolytes achieve an ionic conductivity of 3.6
× 10−4 S cm−1 and a Li+ transference number of 0.38, owing to
more Li+ transport pathways together with the large interfacial
ion conduction area and enhanced nanotube/polymer
interaction. In addition to improved transportation of lithium
ions, the LLTO NTs/PAN CSE has good thermal stability and
high mechanical strength (tensile strength of 5.61 MPa), as
well as a wide electrochemical window of 5 V. The Li−Li
symmetric cells with the LLTO NTs/PAN CSE can achieve
long-term cycle stability without a short circuit. Solid batteries
assembled with Li|10LLTO NTs/PAN CSE|LiFePO4 show a

Figure 5. Electrochemical performance test of the 10LLTO NTs/PAN CSE in batteries. (a) Voltage profile of the continued lithium plating/
stripping cycling with a current density of 0.05 mA cm−2 at RT (the inset shows the voltage profile around 200 h and 800 h). (b) Cycle stability
with Coulombic efficiency under 0.5 C of the Li−LFP battery. (c) Rate capability (0.1−2 C) of the Li−LFP battery. (d) Corresponding charge−
discharge voltage profiles.
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good cycling performance and rate capacity at RT. All of the
results indicate that the rational design of open-structured
nanotubes establishes a potential way for advanced nano-
structured fillers, which can be applied in high-performance
solid electrolytes for solid-state lithium metal batteries.
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