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EXPERIMENTAL SECTION 

Characterization. Scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) were performed on JEOL-7100F and JEM-2100F microscopes. High-angle annular dark 

field scanning transmission electron microscopy (HAADF-STEM) images and the energy 

dispersive X-ray spectroscopy (EDS) measurements were performed on a Talos F200S 

microscope. X-ray diffraction (XRD) patterns were collected using a Bruker D8 Advance X-ray 

diffractometer with a Cu Kα X-ray source. Raman spectra were recorded with a Renishaw INVIA 

Raman microscope. Thermo gravimetric analysis (TGA) was measured by a STA-449C apparatus. 

The surface areas were determined by a Tristar-3020 instrument. X-ray photoelectron 

spectroscopy (XPS) measurements were performed on a VG Multilab 2000 X-ray photoelectron 

spectrometer. 
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Electrochemical Measurement. To prepare the working electrodes, the active material, acetylene 

black, and sodium alginate were mixed in an agate mortar with a weight ratio of 7:2:1. The mixture 

was then grinded to form a homogeneous slurry and coated onto a Cu foil followed by drying. 

After being punched into discs, the working electrodes were obtained. The mass loading of active 

material was 1.0 – 1.5 mg cm–2. The working electrode and Li metal were used to assembled coin-

type half cells (CR2016). The electrolyte was composed of 1.0 M LiPF6 in a mixture of ethylene 

carbonate/dimethyl carbonate (1:1 in volume) with 10 vol.% fluoroethylene carbonate (FEC). 

Galvanostatic charge/discharge (GCD) measurements (0.01 – 1.5 V vs. Li+/Li) were performed on 

a LAND CT2001A multichannel battery tester. Cyclic voltammetry (CV) was obtained on a 

PGSTAT302N Autolab potentiostat/galvanostat between 0.01 and 2.0 V at a scan rate of 0.1 mV 

s–1. Electrochemical impedance spectra (EIS) were collected at a frequency range of 10 Hz to 100 

kHz with a potential amplitude of 10 mV. 

Si@SiOx@C//LiFePO4 and Si/C//LiFePO4 full-cells were also assembled. The Si@SiOx@C and 

Si/C was first cycled in half-cells for several cycles and then taken out in de-lithiated state for full-

cell assembly. The cathodes were obtained by mixing LiFePO4, super-P, and poly 

(vinylidenefluoride) (PVDF) with a mass ratio of 70:20:10, grinding, followed by coating onto an 

Al foil and drying. The cathode material/anode material weight ratio was around 6:1, and the full-

cells were cycled in the voltage window of 2.4 – 3.8 V at 0.2 C (1 C = 170 mA g−1).
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Figure S1. (a) SEM, (b) TEM, (c) HAADF-STEM image and the corresponding (d-g) EDS 

mappings of Si nanoparticles. 

 

 

Figure S2. (a) SEM, (b) TEM, (c) HAADF-STEM image and the corresponding (d-g) EDS 

mappings of Si@SiOx.
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Figure S3. (a-c) HAADF-STEM images and their corresponding EDS mappings of Si@SiOx@C 

on different particles.
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Figure S4. TEM images of the hollow carbon particles obtained by etching the Si@SiOx@C with 

HF. 

 

 

Figure S5. (a) SEM and (b) TEM image of CSs. 
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Figure S6. (a) SEM, (b) TEM, (c) HAADF-STEM image and the corresponding (d-h) EDS 

mappings of Si/C.
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Figure S7. N2 adsorption/desorption isotherms of Si@SiOx@C. 

 

 

Figure S8. (a) XPS survey spectra of Si@SiOx@C, Si@SiOx and Si; high-resolution (b) C1s, (c) 

N1s, and (d) O1s XPS spectra of Si@SiOx@C. 
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Figure S9. Cycling performances and selected GCD profiles of (a, b) Si and (c, d) Si@SiOx at 200 

mA g–1. 

 

 

Figure S10. (a) Cycling performance and (b) selected GCD profiles of CSs at 200 mA g–1. 
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Figure S11. Charge-discharge curves of Si@SiOx@C at various current densities. 

 

Table S1. Lithium storage performances of various Si-based anode materials. 

Ref. 
Reversible Capacity 

(mAh g–1) 

Initial Coulombic 

Efficiency (ICE) 
Cycling Performance (mAh g–1) 

Rate Capability 

(mAh g–1) 

Electrochemical 

Window 

This 

work 
1168 (200 mA g–1) 64 % 94 % (500 mA g–1, 500 cycles) 343 (5 A g–1) 0.01 – 1.5 V 

[S1] 952 (200 mA g–1) 61 % 87 % (500 mA g–1, 300 cycles) 406 (5 A g–1) 0.01 – 1.5 V 

[S2] 620 (60 mA g–1) 89 % 75 % (300 mA g–1, 500 cycles) ≈ 500 (3 A g–1) 0.005 – 1.0 V 

[S3] 882 (50 mA g–1) 73 % 89 % (200 mA g–1, 305 cycles) 466 (2 A g–1) 0.001 – 3.0 V 

[S4] 964 (400 mA g–1) ≈ 59 % 92 % (400 mA g–1, 100 cycles) 475 (3.2 A g–1) 0.01 – 1.5 V 

[S5] 560 (100 mA g–1) 58 % 87 % (300 mA g–1, 500 cycles) 230 (1.6 A g–1) 0.01 – 1.5 V 

[S6] 1423 (100 mA g–1) ≈ 43 % ≈ 80 % (500 mA g–1, 200 cycles) 586 (2 A g–1) 0.005 – 1.5 V 

[S7] 895 (100 mA g–1) 73 % 103 % (1000 mA g–1, 800 cycles) ≈ 250 (5 A g–1) 0.01 – 3.0 V 

[S8] 1117 (50 mA g–1) 56 % 80 % (500 mA g–1, 200 cycles) ≈ 500 (1 A g–1) 0.01 – 1.5 V 
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Figure S12. Cycling performance of Si@SiOx@C sample with a lower carbon content at 500 mA 

g–1. 

 

 

Figure S13. The electrochemical impedance spectroscopy plots of Si@SiOx@C and Si@SiOx (a) 

before and (b) after cycling, the inset is equivalent circuit for fitting impedance plot. 
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Figure S14. Top-view SEM images of Si@SiOx (a) before and (b) after 100 cycles at 200 mA g–

1, top-view SEM images of Si@SiOx@C (c) before and (d) after 100 cycles at 200 mA g–1.
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Figure S15. Cross-sectional SEM images of Si@SiOx-based electrode (a) before and (b) after 100 

cycles at 200 mA g–1, cross-sectional SEM images of Si@SiOx@C-based electrode (c) before and 

(d) after 100 cycles at 200 mA g–1.
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Figure S16. (a) HAADF-STEM image and the corresponding (b-f) EDS mappings of Si@SiOx@C 

after 100 cycles at 200 mA g–1. 

 

 

Figure S17. (a) Selected GCD profiles and (b) cycling performance of LiFePO4 at 0.2 C.
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Figure S18. (a) Representative GCD profiles and (b) cycling performance of the Si/C//LiFePO4 

full-cell at 0.2 C. 
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