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ABSTRACT: Si is a well-known high-capacity lithium-ion battery anode material; however, it suffers from conductivity and volume
expansion issues. Herein, we develop a “surface oxidation” strategy to introduce a SiOx layer on Si nanoparticles for subsequent
carbon coating. It is found that the surface SiOx layer could facilitate the conformal resin coating process through strong interactions
with phenolic resin, and well-defined core@double-shell-structured Si@SiOx@C can be obtained after further carbonization.
Without the surface SiOx layer, only a negligible fraction of Si nanoparticles can be encapsulated into the carbon matrix. With
enhanced conductivity and confined volume change, Si@SiOx@C demonstrates high reversible capacity as well as long-term
durability.
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1. INTRODUCTION

Lithium-ion batteries (LIBs) have played significant roles in the
modern society since 1990s owing to their high energy density
and durability.1−8 Currently, commercialized LIBs generally
employ Li4Ti5O12 or graphite in the anode. Nevertheless, the
performances of such batteries cannot meet the ever-increasing
requirements partly due to the unsatisfactory capacity and high
working potential of Li4Ti5O12

9 as well as the safety issue of
graphite.10 This situation necessitates novel anode materials
with high capacity, suitable working potential, and better
safety.11,12

Si is a promising LIB anode material,8,13−19 not only because
of its abundance and low cost but also due to its high theoretical
capacity.20−24 In addition, the suitable Li+ insertion/extraction
potential of Si greatly alleviates the formation of Li dendrites.25

Nevertheless, the widespread application of Si is faced with low
conductivity26,27 and a large volume change,28−30 leading to
active material pulverization, detachment from the current
collector, and repeated generation and rupture of the solid
electrolyte interface (SEI) film.31−33 These limitations even-

tually give rise to poor cycling and rate behaviors, seriously
restricting the practical applications.
Encapsulating nanosized Si in a highly conductive carbon

matrix has been employed to boost the conductivity and to
mitigate the volume change of Si.13,34−43 As a result, rationally
designed Si/C composites usually demonstrate enhanced
cyclability and rate capability compared with bare Si. However,
the conformal coating of carbon onto Si is difficult owing to its
relatively inert surface. Herein, we develop a “surface oxidation”
method to introduce a SiOx layer on Si nanoparticles through
annealing in air to facilitate the subsequent conformal carbon
coating. Through strong hydrogen-bonding interactions,
phenolic resin can be easily coated onto the SiOx-modified Si
nanoparticles and then converted into a conformal carbon
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coating shell. The obtained material (Si@SiOx@C) possesses a
well-defined core@double-shell structure with enhanced
conductivity and structural stability. As expected, Si@SiOx@C
demonstrates high reversible capacity as well as long-term
durability.

2. EXPERIMENTAL SECTION
Synthesis of Materials. SiOx-modified Si nanoparticles (denoted

as Si@SiOx) were synthesized by calcinating pristine Si nanoparticles at
600 °C for 4 h in air. The conformal coating of Si@SiOx with carbon
was realized through a facile self-catalyzed polymerization approach.
Typically, 0.2 g of Si@SiOx was first dispersed in 50 mL of deionized

Figure 1. Schematic illustration for synthesizing core@double-shell-structured Si@SiOx@C and Si/C.

Figure 2. (a) SEM, (b, c) TEM, (d) HAADF-STEM images, (e) EDS spectra, and (f−j) EDS mappings of Si@SiOx@C (corresponding to d).
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water. Then, 0.16 g of 3-aminophenol and 0.2 g of hexamethylenetetr-
amine (HMTA) were added. The dispersion was then heated to 85 °C
and kept at 85 °C for 24 h under constant stirring. The collected
intermediate (Si@SiOx@resin) was annealed at 800 °C for 4 h in Ar to
obtain Si@SiOx@C. Si/C was synthesized by replacing Si@SiOx with
bare Si under the same conditions. Pure carbon microspheres (CSs)
were obtained by the same method without adding Si@SiOx. Si@
SiOx@C with a lower carbon content was prepared by increasing the
Si@SiOx feeding amount to 0.4 g.

3. RESULTS AND DISCUSSION
The construction of core@double-shell-structured Si@SiOx@C
generally involves three stepssurface oxidation, conformal
resin coating, and carbonization (Figure 1). Specifically, the
pristine Si nanoparticles are first calcined in air to introduce a
surface SiOx layer on Si. Then, the 3-aminophenol-form-
aldehyde resin is coated conformally onto Si@SiOx through a
self-catalyzed polymerization reaction, leading to the formation
of Si@SiOx@resin. Finally, the Si@SiOx@resin is carbonized at
800 °C in Ar, and the core@double-shell-structured Si@SiOx@
C can be obtained. It should be mentioned that the introduction
of a surface SiOx layer is beneficial for the subsequent successful
conformal carbon coating due to the strong interactions
between the surface SiOx and functional groups (−OH and
−NH2) of the 3-aminophenol-formaldehyde resin. Without
such a surface SiOx layer, only a small fraction of the pristine Si
nanoparticles can be encapsulated into the carbon spheres,
leading to amixture of bare Si nanoparticles, carbon spheres, and
carbon-coated Si (Si@C), and the sample is designated as Si/C.
Bare Si nanoparticles are generally round in shape with an

average size of around 100 nm (Figure S1). Calcination of Si
nanoparticles in air at 600 °C does not alter the overall
morphology and size obviously (Figure S2a,b). However, one
can notice that the sample after calcination presents an obvious
core@shell structure in a high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) image

(Figure S2c). The core shows a brighter contrast, whereas the
shell shows a darker contrast. The thickness of the shell is ∼15
nm. Energy-dispersive X-ray spectroscopy (EDS) mappings
clearly demonstrate that the core region consists of pure Si, while
the shell region consists of both Si andO. TheseHAADF-STEM
image and EDS mappings suggest that the calcination of Si
nanoparticles in air introduces a uniform SiOx shell on their
surface, and thus the sample after calcination is designated as
Si@SiOx.
Si@SiOx@C obtained after coating Si@SiOx with the resin

and carbonization is composed of irregularly shaped submicron
particles with sizes of 200−400 nm (Figure 2a,b). The obvious
increase in the particle size suggests the coating of carbon on
Si@SiOx. A small fraction of submicron spheres, which may be
pure carbon spheres, can also be observed in Si@SiOx@C
(Figure 2a, indicated by red arrows). Transmission electron
microscopy (TEM) images clearly show the successful envelop
of Si@SiOx nanoparticles with a darker contrast in the carbon
matrix with a brighter contrast (Figure 2b,c). As displayed in
Figure 2d, the conformal carbon coating presents a uniform
thickness of ∼100 nm. EDS spectra (Figure 2e) are obtained at
the core and shell regions of a single Si@SiOx@C particle. The
EDS spectra reveal that the core and shell consist of Si@SiOx
and N-doped carbon, respectively. The HAADF-STEM image
(Figure 2d) and its corresponding EDS mappings (Figure 2f−j)
further confirm the successful conformal coating of N-doped
carbon on Si@SiOx. HAADF-STEM and EDS mappings are
conducted on a few particles, and all of the results confirm the
Si@SiOx@C core@double-shell structure of the products
(Figure S3). To further demonstrate the uniform carbon
coating, the Si@SiOx@C particles are subjected to HF etching,
which selectively removes Si@SiOx but leaves the carbon.
Hollow carbon particles with a uniform shell thickness of ∼100
nm can be obtained (Figure S4) after HF etching, confirming
the successful conformal coating. The conformal coating of

Figure 3. (a) XRD patterns of Si@SiOx@C, Si@SiOx, and Si; (b) Raman spectra of Si@SiOx@C and Si@SiOx; (c) TGA curves of Si@SiOx@C, Si/C,
Si@SiOx, and Si; and (d) high-resolution Si2p XPS spectra of Si@SiOx@C, Si@SiOx, and Si.
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carbon on Si@SiOx can be attributed to the introduction of a
SiOx intermediate layer, which provides strong interactions with
the 3-aminophenol-formaldehyde resin (carbon precursor)
through hydrogen bonding. When applied in lithium storage,
the SiOx intermediate layer and conformal N-doped carbon shell
are highly beneficial for alleviating the volume variation of Si
nanoparticles and improving the ionic/electrical conductivity.
The control samples are also characterized by scanning

electron microscopy (SEM) and TEM. The CSs derived from
the self-polymerization of 3-aminophenol and HMTA are
composed of uniform carbon spheres with diameters of ∼1
μm(Figure S5).Without the surface SiOx layer, only a very small
fraction of Si nanoparticles can be encapsulated into the carbon
matrix, and a mixture of Si nanoparticles, carbon spheres, and
Si@C is obtained (Figure S6).
Figure 3a displays the X-ray diffraction (XRD) data of Si@

SiOx@C, Si@SiOx, and pure Si. All three samples present peaks
at 2θ = 28.4, 47.3, 56.1, 69.1, and 76.4°, which are characteristics
of crystalline Si. The N-doped carbon shows an amorphous
feature, as evidenced by the absence of diffractions for carbon in
the XRD pattern of Si@SiOx@C. Si@SiOx@C and Si@SiOx
present a sharp band at ∼ 506 cm−1 and a weak one at 928 cm−1

in Raman spectra (Figure 3b), corresponding to the Si−Si
stretching.44,45 In addition, Si@SiOx@C presents a broad D
band (1338 cm−1) and a G band (1588 cm−1), which are
characteristics of carbon. The comparable D and G band
intensities confirm the amorphous characteristic of carbon.
Thermogravimetric analysis (TGA) is conducted to monitor the
carbon contents of samples (Figure 3c). Compared to pure Si,
Si@SiOx shows a lower weight gain at temperatures above 800
°C, which originates from the preoxidation of Si to SiOx. For
Si@SiOx@C, the combustion of amorphous carbon causes a
sharp weight loss at∼550 °C, and the carbon accounts for∼62.7
wt % of the total weight. N2 sorption is employed to determine
the surface area (Figure S7). Si@SiOx shows a smaller surface
area (3.0 m2 g−1) than Si@SiOx@C (146.1 m2 g−1).

The surface composition and valence states are characterized
by X-ray photoelectron spectroscopy (XPS). Considering that
the effective detecting depth of XPS is less than 10 nm, Si@
SiOx@C is subjected to Ar+ etching before measurement. The
survey spectrum of Si@SiOx@C exhibits a stronger C 1s signal
than those of Si@SiOx and Si (Figure S8). The Si 2p core-level
spectra (Figure 3d) of all three samples show five Si
components: Si4+ (103.9 eV), Si3+ (102.8 eV), Si2+ (101.6
eV), Si+ (100.1 eV), and Si0 (98.7 eV).46 The average Si-valence
states of Si, Si@SiOx, and Si@SiOx@C are calculated to be 0.74,
1.83, and 1.72, respectively. In detail, the surface of Si is
dominated by Si0 as expected; after surface oxidation, the Si3+

component increases sharply. After further resin coating and
carbonization, the Si4+, Si2+, and Si+ species increase obviously,
which may be caused by the disproportionation of Si3+ during
carbonization. The C 1s spectrum of Si@SiOx@C (Figure S8b)
can be deconvoluted into sp2-bonded C (CC), C−O or C−N
bond, and CO bond.47 The N 1s core-level spectrum (Figure
S8c) is dominated by quaternary N, pyrrolic N, and pyridinic
N,48 indicating that the amorphous carbon is doped by nitrogen.
The O 1s spectrum (Figure S8d) is dominated by Si−O−Si, C−
O−C, and Si−O−C.49
Figure 4a presents the cyclic voltammetry (CV) profiles of

Si@SiOx@C. Two reduction peaks are observed at 1.34 and
0.60 V of the first cathodic process. Both peaks disappear in the
subsequent cycles, suggesting that such peaks originate from the
decomposition of the fluoroethylene carbonate (FEC) and/or
carbonic ester-based electrolyte. As for the subsequent cycles,
the redox peaks can be ascribed to the alloying/dealloying
reaction (Si + x Li+ + x e− ↔ LixSi). The overlapping CV curves
since the second cycle indicate the good electrochemical
reversibility of Si@SiOx@C.
Representative galvanostatic charge/discharge (GCD) pro-

files of Si@SiOx@C are displayed in Figure 4b. Si@SiOx@C
manifests a relatively low first-cycle Coulombic efficiency (CE)
of 64.4%, which is attributed to irreversible Li+ consumption,

Figure 4. (a) CV profiles and (b) representative GCD profiles of Si@SiOx@C; cycling performances of Si@SiOx@C and Si/C at (c) 200 mA g−1 and
(d) 500 mA g−1; and (e) rate performances of Si@SiOx@C and Si/C. For (d), the samples are activated at 200 mA g−1 for 5 cycles and then cycled at
500 mA g−1.
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such as SEI formation and lithium trapping in the activematerial.
To meet the requirements of practical uses, the low first-cycle
CE issue can be improved through prelithiation strategies.50−52

Figure 4c compares the cycling performances at 200 mA g−1.
Although Si/C possesses a higher first discharge capacity, the
capacity declines quickly upon cycling. On the contrary, Si@
SiOx@C demonstrates a much better cyclability, maintaining
770 mAh g−1 after 50 cycles. For comparison, the cycling
performances and representative GCD profiles of the bare Si,
Si@SiOx, and CSs are provided in Figures S9 and S10. The
much-improved cycling stability of Si@SiOx@C compared to
the control samples verifies the important role of conformal N-
doped carbon coating in alleviating the volume variation. The
long-term cycling performances are presented in Figure 4d. After
500 cycles, the Si@SiOx@C still keeps a high capacity (739mAh
g−1); the capacity retention is 94.4% to the sixth cycle. In
contrast, the retained capacity of Si/C is just 284 mAh g−1, and
the retention is only 46.7% to the sixth cycle.
Besides high capacity and improved cyclability, Si@SiOx@C

also manifests an ideal rate capability. The Si@SiOx@C delivers
a capacity of 343 mAh g−1 at 5 A g−1 (Figures 4e and S11).
Furthermore, the capacity can be restored to 849 mAh g−1 when
the current density shifts back to 200 mA g−1. Compared to
previous reports (Table S1), Si@SiOx@C exhibits competitive
lithium storage properties. Si@SiOx@C with a lower carbon
content is also synthesized. Although the Si@SiOx@C with a
lower carbon content presents a higher capacity, its cyclability is
not as good as the Si@SiOx@C with a higher carbon content
(Figure S12).
Figure S13 presents the electrochemical impedance spectra

(EIS) plots, from where the Warburg impedance (W) and
charge-transfer resistance (Rct) can be determined.53 Before
cycling (Figure S13a), Si@SiOx@C shows an Rct value of 41.2
Ω; after 100 cycles (Figure S13b), the Rct increases slightly to
57.7 Ω. On the contrary, the Rct of Si@SiOx increases quickly
from 79.8 to 185.0 Ω. The EIS results verify the vital role of the
N-doped carbon coating in enhancing the conductivity.

The large volume variation and unsatisfactory structural
stability represent significant challenges for alloying-type anode
materials. The structural stability is studied by ex situ SEM
(Figures S14 and S15) and TEM (Figure S16). Severe cracking
could be observed for the Si@SiOx-based electrode after 100
cycles (Figure S14b). In addition, the electrode thickness
increases sharply from 17.4 to 24.8 μm, and the thickness
expansion ratio reaches 42.5% (Figure S15b). In contrast, the
Si@SiOx@C-based electrode shows excellent structural integ-
rity (Figure S14d). After 100 cycles, the thickness of the
electrode increases slightly from 14.5 to 15.4 μm, corresponding
to an alleviated thickness expansion of 6.2% (Figure S15d). The
HAADF-STEM image and EDS mappings of Si@SiOx@C after
cycling are provided in Figure S16. The core@double-shell
structure is well maintained after 100 deep discharge−charge
cycles, verifying its ideal structural integrity. The ex situ SEM and
TEM reveal the important role of carbon coating in suppressing
the volume expansion and maintaining the structural integrity,
which are responsible for the boosted cycling stability of Si@
SiOx@C.
The structure evolution of Si@SiOx@C and bare Si

nanoparticles during cycling is schematically presented in Figure
5. For Si@SiOx@C, although the volume change of Si is
unavoidable, the SiOx layer and carbon shell could suppress the
huge volume variation of Si and improve its structural stability.
Consequently, stable cycling can be achieved. However, for bare
Si nanoparticles, the repeated volume variation/contraction
unavoidably leads to pulverization and an unstable SEI film. As a
result, the bare Si nanoparticles suffer from poor cyclability.
Considering the fact that most of the Si nanoparticles in Si/C
have not been coated with carbon, it is not surprising that Si/C
exhibits unsatisfactory cycling stability.
By coupling with the LiFePO4 cathode materials, Si@SiOx@

C//LiFePO4 and Si/C//LiFePO4 full-cells are assembled. The
commercial LiFePO4 cathode material exhibits a discharge
plateau at 3.4 V with very stable cycling (Figure S17). The Si@
SiOx@C//LiFePO4 full-cell inherits the ideal cycling stability of
LiFePO4 (Figure 6). However, the voltage plateau of the full-cell

Figure 5. Schematic illustrations showing the structure evolution of (a) Si@SiOx@C and (b) pristine Si nanoparticles during cycling.
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is lowered to around 3.1 V. Based on the weight of LiFePO4, the
Si@SiOx@C//LiFePO4 full-cell manifests a high reversible
capacity (143.2 mAh g−1) and maintains 131.9 mAh g−1 after
100 cycles. In contrast, the Si/C//LiFePO4 full-cell demon-
strates very poor cyclability (Figure S18). Its capacity decays to
only 25 mAh g−1 after 100 cycles, which is due to the
pulverization of Si.

4. CONCLUSIONS

In conclusion, a surface oxidation strategy has been developed to
optimize the subsequent carbon encapsulation process and thus
lithium storage performance of Si nanoparticles. The surface
SiOx layer facilitates the conformal coating of resin, which is then
converted into N-doped carbon, through hydrogen bonding.
Without the surface SiOx layer, only a very small fraction of Si
nanoparticles can be encapsulated into carbon. The N-doped
carbon coating improves the conductivity as well as the
structural integrity of Si@SiOx. As a consequence, the core@
double-shell-structured Si@SiOx@C demonstrates significantly
improved cycling stability. This contribution highlights the
significant role of interactions between active materials and
carbon precursors in fabrication of high-performance carbon-
coated electrode materials.
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