Origin of extra capacity in nitrogen-doped porous carbon nanofibers

for high-performance potassium ion batteries

Fang Liu^{a, b}, Jiashen Meng^a, Fanjie Xia^{a, b}, Ziang Liu^a, Haoyang Peng^{a, b}, Congli Sun^{a, b}, Linhan

Xu^{*, d, e}, Gustaaf Van Tendeloo^{b, c}, Liqiang Mai^{*, a}, Jinsong Wu^{*, a, b}

Figure S1. Schematic illustration of the formation process of freestanding porous NCNF.

a function funct

Figure S2. (a) XRD patterns of ZIF-8&2-MIM@PAN nanofibers. (b-d) SEM images of ZIF-8&2-MIM@PAN nanofibers. (e, f) TEM images of ZIF-8&2-MIM@PAN nanofibers.

Figure S3. (a-c) SEM images of the NCNF-800 sample. (d-f) SEM images of NCNF-1000.

Figure S4. (a) HRTEM images of the NCNF-800 sample. (b) HRTEM images of NCNF-1000 sample.

Temperature (°C)	I _D	I _G	I _D /I _G	Average size of crystalline domains (nm)
800	1241360	463109	2.68	14.35696
1000	378872	157420	2.41	15.98985

Table S1. A summary of Raman results for NCNF-800 and NCNF-1000 samples.

Tuinstra-Koenig Relation:

$$L_a = \left(2.4 \times 10^{-10}\right) \times \lambda^4 \times \left(I_D / I_G\right)^{-1}$$

 L_a is the average size of the in-plane sp²-domains; λ is the laser excitation wavelength (633 nm); I_D is the intensity of the D-peak; I_G is the intensity of the G-peak. The smaller the intensity of the D-peak, the larger La and the larger average size of the crystalline domains.

Table S2. A summary of the relative contents of C, N and H in NCNF-800 and NCNF-1000 samples.

Samples	C (wt%)	N (wt%)	H (wt%)
NCNF-800	91.6	6.9	1.6
NCNF-1000	97.4	1.9	0.7

Figure S5. (a) First four CV curves of the NCNF-800 sample tested at a scan rate of 0.2 $mV \cdot s^{-1}$ in a potential range from 0.01 to 3.0 V versus K⁺/K. (b) First four CV curves of the NCNF-1000 sample tested at a scan rate of 0.2 $mV \cdot s^{-1}$ in a potential range from 0.01 to 3.0 V versus K⁺/K. Inset of (b) is magnified CV curves.

Table S3 A comparison of discharge capacities and the position of the π^* -peak and σ^* -peak for different discharge voltages at 100 mA g⁻¹ current density between NCNF-800 and NCNF-1000.

	Discharge voltage (V)	οςν	2	1.5	1	0.5	0.01
NCNF 800	The discharge capacity (mAh g ⁻¹)	0	5	30	72	153	280
	The position of π*-peak (eV)	285.3	-	-	285.3	285.3	287.4
	The position of σ*-peak (eV)	291.8	-	-	292.0	292.1	291.4
NCNF 1000	The discharge capacity (mAh g ⁻¹)		0	3	28	70	180
	The position of π*-peak (eV)	284.8	-	-	285.1	285.6	286
	The position of σ*-peak (eV)	291.8	-	_	291.8	291.8	292.6

Figure S6. Capacity distribution from the high-voltage region (shaded) and from the low-voltage region (solid) for both NCNF-800 and the NCNF-1000 electrodes at different current densities.

Figure S7. The optical image of a freestanding anode based on the NCNT sample.

Figure S8. The cross-section SEM images of NCNF-800

Figure S9. The Nyquist plots of NCNF-800 at different cycles.

Figure S10. (a-c) SEM images of NCNF-800 after 1000 cycles at a current density of 2000 mA \cdot g⁻¹.

Figure S11. (a-c) The morphological evolution of NCNF-800 during the potassiation reaction. (d-e) First four CV curves of NCNF-1000 sample tested at a scan rate of 0.2 $mV \cdot s^{-1}$ in the potential range from 0.01 to 3.0 V versus K⁺/K.

Figure S12. Raman spectra of (a) NCNF-800 and (b) NCNF-1000 at different potentials during the discharge process.

Figure S13. The variation of the average adsorption energy along with the number of K atoms for different N-doped graphene.