Electronic Supplementary Information

Bilayered microelectrodes based on electrochemically deposited MnO$_2$/polypyrrole towards fast charge transport kinetics for micro-supercapacitor

Waqas Ali Haider, Liang He,* Hameed A. Mirza, Muhammad Tahir, Aamir Minhas Khan, Kwadwo Asare Owusu, Wei Yang, Zhuqing Wang and Liqiang Mai*

*aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.

*E-mail: hel@whut.edu.cn, mlq518@whut.edu.cn

bDepartment of Chemistry, York University, Toronto M3J 1P3, Ontario, Canada.

cA.S. Chemical Laboratories Inc., Concord L4K 4M4, Ontario, Canada.

dDepartment of Electrical Engineering and Computer Science, York University, Toronto, M3J 1P3 Canada.

eGraduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.

Fig. S1. Configuration and dimension of the microelectrodes.
Fig. S2. (a) Optical microscope image and (b) SEM image of MnO\textsubscript{2}/PPy microelectrodes.

Fig. S3. EDS characterization results of MnO\textsubscript{2}/PPy.
Fig. S4. Electrochemical performance of MnO$_2$/PPy-MSC. (a) Cyclic voltammetry curves at different scan rates and (b) charge-discharge curves at different current densities.

Fig. S5. Comparison of (a) CV and (b) GCD curves of MnO$_2$/PPy-MSC and PPy@MnO$_2$-MSC.
Fig. S6. Rate capability and corresponding voltage drop of MnO$_2$/PPy-MSC at different current densities.

Fig. S7. Energy and power densities of MnO$_2$/PPy-MSC at different current densities.