Supplementary Information

Methanol derived high-performance Na$_3$V$_2$(PO$_4$)$_3$/C: From kilogram-Scale Synthesis to pouch cell Safety Detection

Yuqiang Pia, Zhiwei Gana, Zheng Lia, Yushan Ruana, Cunyuan Peia, Hui Yua, Kang Hana, Yaowen Geb, Qinyou Ana,c,* and Liqiang Maia,c,*

aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan 430070, China
bWUT Powerful Energy Co., Ltd., Hubei, Wuhan 430223, China
cFoshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, Foshan 528200, China

*Corresponding Authors

E-mail: mlq518@whut.edu.cn; anqinyou86@whut.edu.cn
Fig. S1. Electronic images of M-NVP/C samples weighed
Fig. S2. a, b) Electronic images of the NVP cathode pole pieces; c, d) Electronic images of the HC anode pole pieces.
Fig. S3. The TG-DSC curve of M-NVP/C and H-NVP/C

Fig. S4. a, b) Electronic images of the precursor and final product in the mullite saggar, respectively.
Fig. S5. a, b and c) SEM images of H-NVP/C; The accompanying diagram of (c) is the corresponding EDS elemental mapping; TEM (d) and HRTEM(f) images of H-NVP/C.
Fig. S6. a) Raman spectra of commercial hard carbon; b) SEM image of hard carbon

Fig. S7. a) The CV curves of hard carbon electrodes in the potential ranging from 0.01 to 2V versus Na/Na$^+$ at a scan rate of 0.1 mV s$^{-1}$; b) Galvanostatic discharge curves of hard carbon at various current density from 50 mA g$^{-1}$ to 300 mA g$^{-1}$; c) Cycling performance of hard carbon electrodes at various current density from 50 mA g$^{-1}$ to 300 mA g$^{-1}$.