
mater.scichina.com link.springer.com Published online 27 March 2020 | https://doi.org/10.1007/s40843-020-1274-0
Sci China Mater 2020, 63(7): 1163–1170

Novel layered K0.7Mn0.7Ni0.3O2 cathode material with
enlarged diffusion channels for high energy density
sodium-ion batteries
Jinghui Chen, Zhitong Xiao, Jiashen Meng, Jinzhi Sheng, Yanan Xu, Junjun Wang,
Chunhua Han and Liqiang Mai*

ABSTRACT As promising, low-cost alternatives of lithium-
ion batteries for large-scale electric energy storage, sodium-
ion batteries (SIBs) have been studied by many researchers.
However, the relatively large size of Na+ leads to sluggish
diffusion kinetics and poor cycling stability in most cathode
materials, restricting their further applications. In this work,
we demonstrated a novel K+-intercalated Mn/Ni-based layered
oxide material (K0.7Mn0.7Ni0.3O2, denoted as KMNO) with
stabilized and enlarged diffusion channels for high energy
density SIBs. A spontaneous ion exchange behavior in forming
K0.1Na0.7Mn0.7Ni0.3O2 between the KMNO electrode and the
sodium ion electrolyte was clearly revealed by in situ X-ray
diffraction and ex situ inductively coupled plasma analysis.
The interlayer space varied from 6.90 to 5.76 Å, larger than
that of Na0.7Mn0.7Ni0.3O2 (5.63 Å). The enlarged ionic diffu-
sion channels can effectively increase the ionic diffusion
coefficient and simultaneously provide more K+ storage sites
in the product framework. As a proof-of-concept application,
the SIBs with the as-prepared KMNO as a cathode display a
high reversible discharge capacity (161.8 mA h g−1 at
0.1 A g−1), high energy density (459 W h kg−1) and superior
rate capability of 71.1 mA h g−1 at 5 A g−1. Our work demon-
strates that the K+ pre-intercalation strategy endows the
layered metal oxides with excellent sodium storage perfor-
mance, which provides new directions for the design of cath-
ode materials for various batteries.

Keywords: K0.7Mn0.7Ni0.3O2, K+ pre-intercalation, enlarged
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INTRODUCTION
Nowadays, with the rapid development of consumer

electronics, portable devices and electric vehicles, re-
chargeable power sources with high energy densities and
low costs are highly desired [1–3]. The further develop-
ment of rechargeable lithium-ion batteries (LIBs) in
practical applications is hindered by the high cost and
scarcity of lithium resource [4–6]. Recently, sodium-ion
batteries (SIBs) have been widely investigated as a new
kind of energy storage system due to the similar working
principle with LIBs, safety and low cost [7–17]. Cathode
materials with an excellent operating voltage and high
specific capacity are crucial for the successful develop-
ment of high energy density SIBs [18–22]. Among most
cathode materials for SIBs [23–29], P2-type Mn/Ni-based
binary metal oxide material is considered as one of the
most promising candidates due to its high operating
potential (Ni2+/4+ redox reaction), but its practical appli-
cation is impeded by the low specific capacity and poor
cycling stability [20–32].
Certainly much effort is put in to enhance the elec-

trochemical property of Mn/Ni-based oxide cathode
materials. One efficient strategy is doping divalent ions to
supersede nickel ion, which can restrain the undesired
phase transition and maintain the structure stability
[33–35]. Wang et al. [33] demonstrated Mg-doped
Na0.67Mn0.67Ni0.28Mg0.05O2 with a reversible capacity of
123 mA h g−1, and a capacity retention of approximately
85% after 50 cycles. Another efficient approach is surface
modification by coating a shell to provide protection, and
then increase the cycle stability. Liu et al. [36] designed a
Al2O3-coated Na2/3Mn2/3Ni1/3O2, which exhibited a re-
versible capacity of 115 mA h g−1 after 300 cycles. Most of
these methods reported by previous work increase the
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cycle stability of such P2-type Mn/Ni-based layered oxi-
des, while the problem of low reversible capacity is ne-
glected. Therefore, the improvement of reversible
capacity in this type layered oxide is desired [37–40]. In
previous studies, a fascinating K+ pre-intercalation ap-
proach was exploited, which enlarged the interlayer spa-
cing to expand the diffusion channels, and then improved
the cycling stability and rate capability of the electrode
materials [41,42]. The pre-intercalation strategy is sup-
posed to be an effective way to enlarge ionic diffusion
channels, stabilize interlayer structures, and improve the
electrochemical performance of such layered oxides.
In this work, we designed and constructed a K+ pre-

intercalated Mn/Ni-based layered oxide (K0.7Mn0.7Ni0.3O2,
denoted as KMNO) by a facile solid phase sintering
method, and investigated the effect of KMNO on the
sodium storage performances. As a cathode material in
SIBs, the obtained KMNO shows a high reversible dis-
charge capacity of 161.8 mA h g−1 at 0.1 A g−1, satisfactory
cycling performance with a 82.3% capacity retention after
500 cycles at 0.5 A g−1 and a high rate property of
71.1 mA h g−1 at 5 A g−1. The Na+ intercalation/deinter-
calation mechanism of KMNO electrode was studied by
ex situ transmission electron microscopy (TEM) mapping
and ex situ X-ray diffraction (XRD). The diffusion ki-
netics of KMNO was analyzed via the galvanostatic in-
termittent titration technique (GITT) measurement. In
addition, our work proposes that K+ pre-intercalation is a
facile and effective approach to enhance the electro-
chemical property of layered oxide cathode materials for
SIBs.

EXPERIMENTAL SECTION

Synthesis of KMNO and Na0.7Mn0.7Ni0.3O2 (NMNO)
The KMNO and NMNO particles were synthesized by
solid phase reactions. First, 4 g of polyvinylpyrrolidone
(PVP, average Mw = 4000) was dissolved in 40 mL of
deionized water, which was magnetic stirred vigorously
for 1 h at room temperature. Second, 3.675 mmol of
potassium acetate (CH3COOK, 99%, 5% potassium
source excess), 3.5 mmol of manganese (II) acetate tet-
rahydrate (Mn(CH3COO)2·4H2O, 99%) and 1.5 mmol of
nickel (II) acetate tetrahydrate (Ni(CH3COO)2·4H2O,
99%) were dissolved in PVP solution (PVP acted as a
dispersant, which made the solution viscous and uni-
form) with vigorous stirring at room temperature for
another 10 h. Then, the mixture was dried in an oven at
70°C for 12 h. The solid from the previous steps was
firstly pre-sintered in muffle furnace at 300°C for 2 h and

then sintered in air at 900°C for 10 h. The heating rate of
the muffle furnace was 5°C min−1. As a comparison, the
NMNO was synthesized using the same processes, with
sodium acetate trihydrate (CH3COONa·3H2O, 99%) used
as the alkali-metal-ion sources. All synthetic materials
were transferred directly to an argon filled glovebox
(MBraun, O2 and H2O ≤ 0.01 ppm).

Structural characterizations
The XRD patterns to investigate the crystallographic
structure were performed by using a D8 Discover X-ray
diffractometer, with Cu Kα radiation (λ = 1.5418 Å).
Scanning electron microscopy (SEM) images were ob-
tained using a JEOL JSM-7100F SEM/EDS microscope at
an acceleration voltage of 20 kV. TEM, high resolution
TEM (HRTEM) and selected area electron diffraction
(SAED) images were collected by a JEM-2100F/Titan G2
60-300 transmission electron microscope. Energy dis-
persive spectroscopy (EDS) mapping was performed
using an EDXGENESIS 60S spectrometer. Inductively
coupled plasma (ICP) tests were performed using a Per-
kinElmer Optima 4300DV spectrometer.

Electrochemical measurement
The electrochemical properties were characterized by
assembling 2016 coin cells in a glove box (O2 ≤ 0.01 ppm
and H2O ≤ 0.01 ppm), with Na metal (99.5%, Sigma-
Aldrich) as the reference electrode. 1 mol L−1 NaClO4 in a
mixture of ethylene carbon (EC) and propylene carbonate
(PC) (v:v = 1:1) and 5.0 wt% fluoroethylene carbonate
(FEC) (electrolyte additive) were used as the electrolyte,
and a Whatman glass fiber (grade GF/D) was used as the
separator. To obtain the cathode materials, 70 wt% as-
synthesized active materials, 20 wt% acetylene black and
10 wt% polyvinylidene fluoride (PVDF) were mixed in N-
methyl-2-pyrrolidone (NMP). The loading of the active
material was approximately 1.6–1.8 mg cm−2. The alu-
minum foil coated with active materials was dried at 70°C
in a vacuum oven overnight. Galvanostatic charge/dis-
charge tests were performed over the potential range
from 2.0 to 4.0 V vs. Na+/Na by using a multichannel
battery testing system (LAND CT2001A). Cyclic vol-
tammetry (CV) and electrochemical impedance spectro-
scopy (EIS) were conducted by using an electrochemical
workstation under the alternating current ranging from
0.01 Hz to 10 kHz (CHI600E and Autolab PGSTAT
302N). GITT was used at each 5-min step of charge/
discharge with a current flux of 10 mA g−1 followed by a
1 h relaxation step. The diffusion coefficient of Na+ was
measured by using GITT and calculated based on the
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following equation:

D L E
E= 4 ,

t

2
s

2

where t and τ represent the duration of current pulse (s)
and relaxation time (s), respectively. L corresponds to the
Na+ diffusion length, which is equal to the thickness of
electrode. ΔEs and ΔEt are the steady-state voltage change
(V) by the current pulse and voltage change (V) during
the constant current pulse (eliminating the voltage
changes after relaxation time)

RESULTS AND DISCUSSION
The XRD patterns of KMNO and NMNO obtained by a
simple solid-phase reaction show obvious crystalline
phases (Fig. 1a). The XRD pattern of KMNO is similar to
that of NMNO, suggesting a similar layered structure. In
particular, the d-spacing of the KMNO is 6.90 Å (2θ =
12.81°), ∼1.22 times higher than that of NMNO (5.63 Å),
verifying the expanded interlayer spacing. Furthermore,
the results of the ICP measurement show that the K:Mn:

Ni and Na:Mn:Ni molar ratios of the as-prepared KMNO
and NMNO are 0.700:0.706:0.298 and 0.700:0.708:0.305,
respectively (Table S1), corresponding to the expected
stoichiometry. From the SEM and TEM images, two
samples have similar particle morphologies with a size
range of 0.5–2 μm (Fig. 1b–d and g). HRTEM images
clearly display the measured interlayer distances of
KMNO and NMNO are ~0.244 and ~0.229 nm, respec-
tively, which are in agreement with the (102) plane of the
layered structure (Fig. 1e, h). The single-crystalline hex-
agonal structures of the two samples are demonstrated by
their SAED patterns (inset of Fig. 1e, h). High angle an-
nular dark-field scanning-TEM (HAADF-STEM) images
further confirm the K, Mn, Ni elements are uniformly
distributed on KMNO and Na, Mn, Ni elements on
NMNO, respectively (Fig. 1f, i).
The superior performances of KMNO as an SIB cath-

ode material compared with NMNO are demonstrated by
electrochemical characterizations (Fig. 2). The multiple
cathodic/anodic peaks are observed in CV curves
(Fig. 2a). The first four sodiation/disodiation processes

Figure 1 Structure and morphology characterizations of KMNO and NMNO. (a) XRD patterns of KMNO and NMNO. SEM images of KMNO (b)
and NMNO (c). TEM image (d, g), HRTEM image (e, h), EDS mapping images (f, i) of KMNO and NMNO, respectively. Insets of (e, h) are the SAED
patterns of KMNO and NMNO, respectively.
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demonstrate the complicated phase transition behavior of
the Na+ intercalation/deintercalation reaction for KMNO.
In the voltage range of 2.0–4.0 V, there are five pairs of
redox peaks, located at 3.58/3.69, 2.91/2.97, 2.70/2.75,
2.29/2.32, and 2.09/2.21 V. For the results of NMNO
(Fig. S1a), five pairs of redox peaks situated at 3.64/3.70,
3.58/3.61, 3.30/3.34, 3.14/3.19 and 2.29/2.33 V can be
observed. When tested at 0.1 A g−1, the KMNO exhibits
an initial discharge capacity of 161.8 mA h g−1 and a
fabulous coulombic efficiency of 98.9% (Fig. 2b), which
are higher than those of NMNO (87.8 mA h g−1 and
96.2%). After 100 cycles, KMNO delivers a discharge
capacity of 154.7 mA h g−1, which is substantially higher
than that of NMNO (72 mA h g−1) (Fig. 2c). Additionally,
the capacity retention of KMNO reaches up to 95.6% (a
slight capacity decay of 0.04% per cycle). In contrast, the
NMNO only preserves 82.0% of its initial capacities. The
KMNO delivers average discharge capacities of 167.6,
151.0, 135.8, 120.4, 105.3, 93.8 and 71.1 mA h g−1 at dif-
ferent current densities of 0.1, 0.2, 0.3, 0.5, 1, 2 and
5 A g−1, respectively, while the discharge capacities of

NMNO are 87.8, 77.3, 71.4, 64.3, 50.0, 23.7 and
11.0 mA h g−1 (Fig. 2d). The discharge capacity quickly
recovers to 164.8 mA h g−1 when the current density re-
duced to 0.1 A g−1, indicating the prominent rate per-
formance of the KMNO. The corresponding discharge/
charge curves of rate performance certify lower polar-
ization and higher capacity reversibility of the KMNO
(Fig. 2e). When tested at a high current density of
0.5 A g−1, NMNO electrode suffers from drastic capacity
degradation of 42.7 mA h g−1 and lower capacity reten-
tion of only 65% than those of KMNO (103.4 mA h g−1,
82.3%) after 500 cycles (Fig. 2g). The EIS plot indicates
the same charge-transfer resistance of the two electrodes
based on KMNO and NMNO, while the KMNO exhibits
fast diffusion resistance, mostly owing to the expanded
interlayer structure (Fig. 2f). The charge-discharge curves
at the selected cycles and various rates of NMNO are
presented in Fig. S1b, c. Compared with some previous
studies (Fig. S2 and Table S2) [43–48], KMNO as a
cathode material for SIBs shows a higher energy density
of 459 W h kg−1, and the superior electrochemical per-

Figure 2 Electrochemical performances of KMNO and NMNO. (a) CV curves at 0.2 mV s−1 of KMNO during the first four cycles. (b) Charge/
discharge curves of KMNO at the selected cycles at 0.1 A g−1. (c) Cycling measurements for the two cathode materials tested at 0.1 A g−1. (d) Rate
performance of these two cathode materials at various rates ranging from 0.1 to 5 and back to 0.1 A g−1. (e) Charge/discharge curves of KMNO at
various rates ranging from 0.1 to 5 and back to 0.1 A g−1. (f) Nyquist plots of these two cathode materials. (g) Cycling performance of KMNO tested at
a high current density of 0.5 A g−1.
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formances are ascribed to the faster diffusion coefficient
due to the enlarged interlayer spacing formed by K+ pre-
intercalation.
To reveal the Na+ intercalation/deintercalation me-

chanism of KMNO, in situ XRD patterns were first per-
formed to investigate its structure variation before cycling
(Fig. 3 and Fig. S3). When the KMNO electrode was
immersed in sodium ion electrolyte for about 12 h, the
interlayer (003) peak shifts dramatically from the initial
12.81° to 15.35°, with the corresponding interlayer spa-
cing changed from 6.90 to 5.76 Å (Fig. 3a). This re-
markable phenomenon is attributed to a driven ion-
exchange process between potassium and sodium ions in
the corresponding components, resulting in the success-
ful transformation from K0.7Mn0.7Ni0.3O2 to K0.1Na0.7-
Mn0.7Ni0.3O2 (Fig. S3a). The interlayer (002) peak of
NMNO remains at 15.53° without shift and the interlayer

spacing has no changes during the same process (Fig. 3b).
The ex situ XRD patterns show the interlayer (003) peak
changes of KMNO at the first cycle process at 0.1 A g−1

(Fig. 3c, d). The peak shifts from high angle (stage 2) to
12.81° (stage 3) during the first charge process from open
circuit voltage to 3.75 V and slowly shifts to a low angle of
12.74° when further charged to 4 V (stage 4). The che-
mical composition of the electrode material changes from
K0.1Na0.7Mn0.7Ni0.3O2 to K0.1Mn0.7Ni0.3O2 during the first
charge process. After discharging from 4 to 3.75 V (stage
5), the peak slowly moves to 12.98°, and in the subsequent
conditioning process, the peak shifts to 16.07° (stage 6),
which is caused by the intercalation of Na+ (K0.1Mn0.7-
Ni0.3O2 to K0.1Na0.7Mn0.7Ni0.3O2). Moreover, the interlayer
spacing varies between 6.95 and 5.52 Å (Fig. S4), corre-
sponding to the extraction and insertion of 0.7 Na+ from
KMNO phase in Na+-containing electrolyte. The KMNO

Figure 3 The sodium storage mechanism of KMNO. In situ XRD patterns of KMNO (a) and NMNO (b) when dropped sodium ion electrolyte and
placed about 12 h. Ex situ XRD patterns at different stages during first cycle (c) and the corresponding voltage-time curve (d). SAED of KMNO at the
stages placed for 12 h (e), 1st charge (f) and 1st discharge (g).
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electrode can maintain a stable single-crystalline hex-
agonal structure when placed in the sodium ion electro-
lyte during the first two cycles, indicating the reversibility
of crystal structure transformation driven by Na+, and
then the capacity retention upon sodium substitution
(Fig. 3e–g and Fig. S5). After 50 cycles, XRD patterns of
KMNO have almost no change from the initial state and
the number of sodium ions involved in the electro-
chemical reaction maintains at about 0.7 (Fig. S6). The ex
situ ICP measurements were carried out to explain the
composition changes of KMNO during charge/discharge
state (Table S3). To confirm no involvement of K+ in Na+-
insertion/extraction, the first discharge, the second charge
and discharge curves of KMNO cycled in fresh NaClO4
electrolyte after the first charge were compared in Fig. S7.
Due to self-discharge of KMNO during electrolyte ex-
change, the discharge capacity is lower, but the capacity
and charge/discharge curve shapes during the second
cycle are almost invariant.
To examine the theoretical capacity and the electro-

chemical kinetics of Na+ in KMNO, the GITT was de-
voted to calculating the diffusion coefficient of Na+ (DNa+)
(Fig. 4a). The KMNO cathode material exhibits a theo-
retical discharge capacity of 185.4 mA h g−1, obviously

higher than that of NMNO (123.8 mA h g−1) (Fig. 4b).
This is because larger interlayer spacing of KMNO can
provide more sodium-storing active sites. The ionic dif-
fusion coefficient can be calculated by Fick’s second laws.
Due to the difference in the charging and discharging
processes of KMNO and NMNO, the calculated diffusion
coefficient distribution law is also different. Overall,
higher values of DNa+ ranging from 2.03 × 10−10 to
7.22 × 10−9 m2 s−1 are obtained for KMNO (average value
equals 1.61 × 10−9 m2 s−1) compared with a range of 5.19
× 10−11 to 2.64 × 10−9 m2 s−1 for NMNO (average value
equals 5.28 × 10−10 m2 s−1) (Fig. 4c, d). Due to the similar
SEM images of the two materials after cycling (Fig. S8),
the morphology has neglect effect on the difference of
their capacities. The excellent electrochemical perfor-
mance of KMNO is mainly due to the faster diffusion
coefficient, which benefits from the larger interlayer
spacing.

CONCLUSIONS
In summary, by using the pre-inserting potassium ion
method, KMNO particles with more favorable interlayer
spacing (6.90 Å) were exploited, resulting in a superior
electrochemical performance as cathode materials for

Figure 4 GITT curves and chemical diffusion coefficients of KMNO and NMNO. Potential response of KMNO (a) and NMNO (c) during GITT
measurement. The calculated chemical diffusion coefficient for Na+ in KMNO (b) and NMNO (d) versus specific capacity.
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SIBs. The interlayer space of KMNO electrode changed
from 6.90 to 5.76 Å when placed in the sodium ion
electrolyte for 12 h, which was attributed to a driven ion-
exchange process of potassium and sodium ions. A high
reversible discharge capacity (161.8 mA h g−1) and a high
energy density (459 W h kg−1) of KMNO are achieved at
0.1 A g−1, corresponding to the reversible insertion of 0.7
Na+. Remarkably, even cycled at a higher rate of 5 A g−1,
the discharge capacity is still maintained at 71.1 mA h g−1.
The superior electrochemical performance of KMNO is
attributed to its large interlayer spacing variation (be-
tween 6.95 and 5.52 Å) and faster electrochemical kinetics
(1.61 × 10−9 m2 s−1). We believe that the present work
provides a strategy to design novel layered transition-
metal oxide cathode materials for high energy density
SIBs.
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具有大扩散通道的新型层状K0.7Mn0.7Ni0.3O2正极
材料用于高能量密度钠离子电池
陈京辉, 肖治桐, 孟甲申, 盛进之, 徐亚楠, 王军军, 韩春华,
麦立强*

摘要 在大规模储能领域, 钠离子电池作为锂离子电池的替代品,
具有低成本的优势, 并已被广泛研究. 由于钠离子的尺寸相对较大,
大多数正极材料的扩散动力学较缓慢, 循环稳定性较差, 从而限制
了钠离子电池的进一步应用. 本工作中, 我们设计了一种新型的
K+插层式Mn/Ni基层状氧化物材料(K0 .7Mn0.7Ni0 . 3O2, 表示为
KMNO), 其具有稳定且扩大的扩散通道, 可作为高能量密度钠离
子电池的正极材料. 我们通过原位XRD和非原位ICP分析探究了
KMNO电极与钠离子电解质之间自发离子交换而形成K0.1Na0.7-
Mn0.7Ni0.3O2的过程. KMNO层间距从6.90 Å缩小到5.76 Å, 大于
Na0.7Mn0.7Ni0.3O2 (5.63 Å). 扩大的离子扩散通道可有效提高材料
的离子扩散系数, 同时材料在其框架内可提供更多的K+储存位点.
以该KMNO为正极材料的钠离子电池具有高可逆放电容量 (在
0.1 A g−1时为161.8 mA h g−1), 高能量密度(459 W h kg−1), 以及超
高的倍率性能(在5 A g−1下高达71.1 mA h g−1). 本工作表明, K+预
嵌入策略使层状金属氧化物具有优异的储钠性能, 为不同电池正
极材料的设计提供了新的方向.
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