Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Mater. Interfaces, DOI: 10.1002/admi.201800848

Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode

Kangning Zhao, Chenxu Wang, Yanhao Yu, Mengyu Yan, Qiulong Wei, Pan He, Yifan Dong, Ziyi Zhang, Xudong Wang, and Liqiang Mai*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode

Kangning Zhao^{a,b}, Chenxu Wang^a, Yanhao Yu^b, Mengyu Yan^{a,c}, Qiulong Wei^{a,d}, Pan He^a,

Yifan Dong^a, Ziyi Zhang^b, Xudong Wang^b, Liqiang Mai^{a,*}

K.N. Zhao, C.X. W., M.Y. Yan, Q.L. Wei, P. He, Y.F. Dong, L.Q. Mai

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,

Wuhan University of Technology, Wuhan 430070, China

E-mail: mlq518@whut.edu.cn (L. Q. Mai)

K.N. Zhao, Y.H. Yu, Z.Y. Zhang, X.D. Wang

Department of Materials Science and Engineering, University of Wisconsin-Madison,

Madison, WI, USA

Fig. S1. Pourbaix diagram of the system Zn/H_2O , 10^{-4} M Zn^{2+} from Materials Project.

Fig. S2. SEM images of commercial zinc plate.

Fig. S3. SEM images of 100TiO₂@Zn-MnO₂.

Fig. S4. SEM image of 500TiO₂@Zn-MnO₂.

Fig. S5. XPS depth profile of 100TiO₂@Zn.

Fig. S6. Cyclic deposition/stripping process of symmetric cells using 500TiO₂@Zn and pristine Zn at a constant current density of 1 mA cm⁻². Each cycle is set to be 1 h.

Fig. S7. Experimental images of a droplet of the electrolyte on **a**, pristine zinc plate, **b**, 100TiO₂@Zn, and **c**, 500TiO₂@Zn.

Fig. S8. EIS spectrum of symmetrical Zn/Zn battery implementing different thickness of TiO₂ layer.

Fig. S9. Ex-situ SEM images of a, 100TiO₂@Zn and b, pristine Zn anode, respectively.

Fig. S10. EDS spectrum of 100TiO₂@Zn after cycling.

Fig. S11. XRD pattern, SEM image and TEM images of MnO₂ Nanowires.

Fig. S13. The charge-discharge curves of Zn-MnO₂ battery of **a**. the initial two cycles at 100 mA g^{-1} and b. at different current density.

Fig. S14. Coulombic efficiencies of 100TiO₂@Zn-MnO₂ cell and Zn-MnO₂ cell at 1 A g⁻¹.

Fig. S15. EIS spectrum of 100TiO₂@Zn-MnO₂ cell and Zn-MnO₂ cell at open circuit voltage.