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 ABSTRACT 

Nanostructured TiO2 has applications in solar cells, photocatalysts, and fast-

charging, safe lithium ion batteries (LIBs). To meet the demand of high-capacity 

and high-rate LIBs with TiO2-based anodes, it is important to fine-tune the 

nanoarchitecture using a well-controlled synthesis approach. Herein, we report 

a new approach that involves epitaxial growth combined with topotactic

conversion to synthesize a unique type of 3D TiO2 nanoarchitecture that is 

assembled by well-oriented ultrathin nanobelts. The whole nanoarchitecture

displays a 3D Chinese knot-like morphology; the core consists of robust 

perpendicular interwoven nanobelts and the shell is made of extended 

nanobelts. The nanobelts oriented in three perpendicular [001]A directions facilitate

Li+ penetration and diffusion. Abundant anatase/TiO2-B interfaces provide a 

large amount of interfacial pseudocapacitance. A high and stable capacity of

130 mA·h·g−1 was obtained after 3,000 cycles at 10 A·g−1 (50 C), and the high-rate 

property of our material was greater than that of many recently reported

high-rate TiO2 anodes. Our result provides, not only a novel synthesis strategy,

but also a new type of 3D anatase TiO2 anode that may be useful in developing 

long-lasting and fast-charging batteries. 

 
 

1 Introduction 

Rocking-chair lithium ion batteries (LIBs), which store 

and release electrical energy via lithium ion (Li+) 

insertion and extraction through the electrode materials, 

are considered to be the most important and 

successfully applied energy storage systems [1–5]. 

Despite possessing advantages such as rechargeability 

and high energy density [6–8], commercial LIBs with 

graphite anodes suffer from fatal safety issues. These  
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issues are caused by the formation of lithium dendrites 

due to the batteries’ near-zero operating potential 

and relatively poor cycling stability caused by large 

volume changes (9%–13%) during lithiation/delithiation 

[9–12]. Efforts have been made to develop alternative 

anode materials that would mitigate such safety 

hazards, promote rate performance, prolong LIB 

lifespan, and enhance LIB capacity to extend the 

possible applications of LIBs [13–16]. For example, 

Yu et al. have designed and synthesized high-energy, 

high-capacity graphene-based nanostructures, such as 

vat dye/graphene composites [17], N-doped porous 

graphene sheets [18], and N, S-codoped graphene [19] 

for use as LIB anode materials. 

Titania (TiO2), a multifunctional semiconductor, is 

a promising alternative anode material for LIBs, due 

to its safe operating potential (~ 1.7 V) and superior 

cycle stability compared to traditional graphite [1, 

20–22]. Various TiO2 LIBs with competitive electro-

chemical performances have been reported [23–25]; 

however, the rate capability of TiO2 LIBs is unsatisfactory 

due to their relatively poor conductivity and low Li+ 

diffusion coefficient (typically 10−8–10−13 cm2·s−1) [26]. 

Note that the electrochemical properties of TiO2 can 

be adjusted by altering crystal size, morphology, 

porous properties, and assembly methods [27–30]. 

Nanostructures with relatively small particle sizes, 

large surface areas, appropriate pore structures, and 

diffusion-benefited morphologies are generally useful 

in reducing ion transfer length and enhancing the 

electrolyte/electrode contact [29, 31–33]. 

Thin two-dimensional (2D) TiO2 nanobelts can 

supply sufficient active sites on both side surfaces 

and provide exceptional charge transport properties 

[29]. It has been shown that nanocrystals (or nanowalls 

for porous materials) approximately 6.5 nm in size 

can accommodate the strain that occurs during the 

spontaneous phase transformation between tetragonal 

anatase TiO2 and orthorhombic LixTiO2, resulting in 

cycling stability improvement [22]. Therefore, 2D 

nanocrystals constructed into three-dimensional (3D) 

hierarchical nanoarchitectures are extremely desirable 

in designing LIB electrode materials that have 

advantageous properties, such as large surface area, 

high durability under strain, and negligible aggregation 

of primary particles [34–37]. Furthermore, the [001] 

direction of tetragonal anatase TiO2 improves Li+ 

penetration and diffusion [38]. Recently, we rationally 

synthesized [001]-oriented anatase TiO2 microcages 

(mc-TiO2) and hollow nanocubes constructed from 

[001]-oriented anatase TiO2 nanoarrays (OATNs), both 

of which exhibited high rate capacity performances 

[14, 39]. Therefore, it is necessary to fabricate nano-

structured TiO2 with desirable crystal sizes, architectures, 

and orientations.  

In this study, a nanobelts-assembled 3D TiO2 

nanoarchitecture, constructed of a core composed of 

robust perpendicular interwoven nanobelts and a shell 

composed of extended silk-like ultrathin nanobelts, 

was successfully created from an mc-TiO2 precursor 

in situ [39]. This novel nanoarchitecture maintained 

the unique 3D perpendicular interwoven assembly of 

the primary building blocks in the mc-TiO2 precursor. 

The ultrathin nanobelts, with thicknesses of appro-

ximately 6 nm, can supply sufficient active sites of both 

side surfaces with large surface areas (302 m2·g−1). As 

a result, 3D TiO2 delivers a Li-ion storage capacity of 

130 mA·h·g−1 after 3,000 cycles at a current of 10 A·g−1 

(50 C, 1 C ~ 200 mA·g−1). The rate capacity and long- 

cycle stability are superior compared to previously 

reported TiO2 nanostructured anodes, such as dispersive 

TiO2 nanobelts, mc-TiO2 [39], and TiO2 microspheres 

constructed out of ultrathin nanosheets (called AB550) 

[40]. This novel 3D TiO2 structure can be utilized in 

the energy storage and environmental industries, and 

the synthesis route proposed in this study provides  

a new strategy for generating new 3D-structured 

materials. 

2 Experimental 

2.1 Preparation of 3D TiO2 nanoarchitectures 

3D mc-TiO2 microcages were prepared as reported  

in our previous work [39]. The mc-TiO2 was used as 

self-template and hydrothermally treated in 10 M 

NaOH at 140 °C for a period of time. The product, 3D 

sodium titanate (NTO), was washed with 1 M acetic 

acid (HAc), and transformed into 3D hydrogen titanate 

nanoarchitectures (3D HTO). Finally, 3D TiO2 nano-

architectures were obtained by annealing hydrogen 

titanate in air at 375 °C for 0.5 h. Similar methods were 

used to prepare randomly dispersed TiO2 nanobelts 

with dispersive anatase nanoparticles as precursor. 
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2.2 Materials characterizations 

Powder X-ray diffraction (XRD) patterns were recorded 

on a Bruker D8 Advance with Cu Kα radiation (40 kV, 

40 mA). Rietveld refinement analysis of XRD patterns 

was used to quantify the abundance of each   

crystal phase in the samples. The morphology was 

characterized using an FEI Quanta 400 Thermal 

Environmental Scanning Electron Microscope (SEM). 

The structural characterization was conducted using 

transmission electron microscopy (TEM), high resolution 

TEM (HRTEM), and scanning transmission electron 

microscopy (STEM) on a JEOL JEM-2010HR microscope 

operating at 200 kV and an FEI Tecnai G2 F30 

microscope operating at 300 kV. Nitrogen adsorption– 

desorption isotherms were obtained at 77 K under 

vacuum on an Autosorb-iQ2-MP (Quanta Chrome). 

2.3 Electrochemical measurements 

CR2032-type coin half-cells, assembled in a glove box 

filled with highly purified Ar gas, were used to evaluate 

electrochemical performance at room temperature. 

The half-cells consisted of a thin film cathode (working 

electrode), a lithium foil as the anode, a Celgard 2400 

polymer film as the separator, and 1 M LiPF6 (ethylene 

carbonate (EC): dimethylcarbonate (DMC) = 1:1 in 

volume) as the electrolyte. The working electrode was 

composed of an active material (TiO2), a conductive 

agent (acetylene black), and a binder material (PVDF) 

in a mass ratio of 7:2:1. The mass loading of the  

active material was approximately 0.4–0.7 mg·cm−2. 

An electrochemical workstation (Autolab PGSTAT302N) 

was utilized for cyclic voltammetry (0.8–3.0 V) and 

electrochemical impedance spectra (105–0.1 Hz) mea-

surements, while NEWARE testing systems (Neware 

Co. Ltd, Shenzhen, China) were used in evaluating 

the galvanostatic discharge/charge performances in 

the voltage range of 1.0–3.0 V. 

3 Results and discussions 

3.1 Structure and morphology characterizations 

The 3D TiO2 nanoarchitectures were synthesized 

directly from 3D mc-TiO2 microcages, which were 

assembled by the perpendicularly arranged 15 nm 

anatase nanoparticles, via a self-template method (Fig. S1 

in the Electronic Supplementary Material, ESM) [39]. 

During the transformation, the layered intermediate, 

NTO, which had a nanobelts-constructed 3D 

nanoarchitecture (Fig. 1(a)), was obtained via the 

hydrothermal treatment of mc-TiO2 in a concentrated 

NaOH solution. The TEM image of the 3D NTO in 

Fig. 1(a) shows that the nanobelts in this 3D nano-

architecture are perpendicularly interwoven. Therefore, 

the 3D arrangement can be preserved during the 

transformation from mc-TiO2 to 3D NTO due to the 

analogous zigzag chains of edge-shared TiO6 octahedra 

[41]. The nanobelts are interlaced with each other 

into a rigid cage-like structure in the core and extend 

outward as flexible silk-like nanoantenna. Such a 

morphology gives the nanoarchitecture high mechanical 

stability and enhanced contact with between neighboring 

structures, as shown by the SEM images in Fig. S2 in 

the ESM. The selected area electron diffraction (SAED) 

pattern of the 3D NTO (Fig. 1(b)) has four bright and 

broad diffraction spots that form a square, which can 

be assigned to (200)N planes of 3D NTO (subscript N is 

denoted as 3D NTO). The nanobelts are approximately 

1 μm in length and 6 nm in thickness (nearly 8 layers) 

with a lattice spacing of 0.76 nm as indicated in the 

HRTEM image (Figs. 1(c) and 1(d)), which further 

confirms the layered crystal structure and ultrathin 

dimensionality of the nanobelts. Through substituting 

H+ for Na+ by washing 3D NTO with HAc (Fig. 1(e)), 

3D HTO nanoarchitectures were readily obtained in 

situ via a topotactic ion-exchange process. Typical 

XRD patterns of the 3D NTO and 3D HTO are shown 

in Fig. S3 in the ESM. Considering that both NTO 

and HTO have identical lepidocrocite-type framework 

structures, the crystal data of H2Ti2O5·H2O (PDF#47- 

0124, a = 0.3784 nm, b = 1.803 nm, and c = 0.2998 nm) 

is used hereafter to be representative of NTO [41–44]. 

A vertical view of the sample, as shown in Fig. 1(a), 

suggests that the rigid cage-like core connected to 

extended nanobelts can be summarily described as a 

2D Chinese knot. The ultrathin nanobelts-assembled 

nanoarchitecture of 3D NTO (or 3D HTO) is schema-

tically illustrated in Fig. 1(f) to show the nanobelts’ 

perpendicular organization in three dimensions, and 

the model is similar in shape to a 3D Chinese knot 

(Fig. 1(g)). 
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After annealing 3D HTO at 375 °C for 0.5 h, anatase 

phase 3D TiO2 nanoarchitectures (3D TiO2) with minor 

TiO2-B were obtained, as shown by the XRD pattern 

and corresponding Rietveld refinement results (Fig. S4 

in the ESM). As presented in the TEM images in 

Figs. 2(a) and 2(b), and the STEM image in Fig. S5(a) 

in the ESM, the TiO2 morphology inherits the unique 

3D nanoarchitecture from 3D HTO (Fig. 1(c)). 

An apparent crystallographic orientation of anatase 

nanocrystals is observed from the SAED pattern in 

Fig. 2(c). The discrete inner diffraction ring can be 

assigned to the (101)A planes of anatase (subscript A 

denotes anatase), while the two bright and elongated 

diffraction spots correspond to the (200)A plane. In 

addition, the line connecting the bright diffraction 

spots in Fig. 2(c) is parallel to the elongation direction 

of the nanobelts in Fig. 2(a), thus indicating that   

the [100]A direction is along the nanobelt. A similar 

phenomenon is also observed in 3D NTO nanobelts 

(Fig. 1(a)). A detailed description of the transformation 

mechanism will be discussed in the next section.  

The SAED data indicate that the numerous anatase 

nanocrystals throughout the entire nanoarchitecture 

are oriented in order, as shown by the model in 

Fig. 2(d). Note that the 3D nanostructures with three 

orientations are preserved throughout our multiple- 

topotactic conversion process. The HRTEM image  

of the nanobelt in Fig. S5(b) in the ESM displays  

the lattice fringes of anatase in the (011
＿

)A and (002)A 

planes, indicating that the material has a high degree 

of crystallinity. Our sample also has a large Brunauer– 

Emmett–Teller (BET) surface area of 302 m2·g−1 with  

a pore size of approximately 10 nm (Fig. 2(e)). The 

ultrathin nanobelts do not only facilitate Li+ transport 

by shortening the ion diffusion distance, but they 

also supply more surface active sites, and their large 

surface areas provide efficient electrolyte/electrode 

contact as well. Importantly, the strain of transforming 

between the anatase (phase A) and the orthorhombic 

LixTiO2 structures (phase B) is accommodated within 

 

Figure 1 Morphologies of 3D NTO and HTO. (a) Low magnification TEM image of 3D NTO nanoarchitecture, and (b) the
corresponding SAED pattern. (c) HRTEM image of the nanobelts. (d) The HRTEM image of the cubic area marked in (b). (e) Low
magnification TEM image of a 3D hydrogen titanate (HTO) nanostructure converted from the 3D NTO nanoarchitecture. (f) A 3D
model of the 3D NTO. The three different colors denote the three orientations of the nanobelts. (g) A 3D Chinese knot. 
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the thin belts through intercalation [22, 31]. Hence, 

we predict that the as-prepared TiO2 nanoarchitecture 

will have excellent Li+ storage performance as an 

anode material. 

3.2 Conversion mechanism 

Based on the TEM results and the crystal structures 

of anatase TiO2 and NTO, a conversion mechanism 

from nanoparticles-assembled 3D mc-TiO2 to nanobelts- 

assembled 3D NTO, and finally to 3D TiO2 was 

proposed, as shown in Schemes 1 and 2. The anatase 

phase has a tetragonal structure with unit cells a = b ≠ 

c due to the discrepancy in length of Ti–O bonds 

along and across the [001]A direction, i.e., 0.198   

and 0.194 nm (Scheme 1(a)), respectively. When 

hydrothermally treated in 10 M NaOH solution,   

the primary anatase nanoparticles in the mc-TiO2 are  

delaminated into tiny planar Ti-O fragments along 

the [001]A direction and form small NTO nanoplates 

with [010]N//[001]A (see Schemes 1 and 2(b)). Then, 

these small NTO nanoplates connect with each other 

along the ac plane, becoming longer NTO nanobelts 

(Scheme 2(c)) [45–48]. Note that a mc-TiO2 microcage 

is constructed by anatase nanoparticles oriented in 

three perpendicular directions, and all six faces of  

the microcage are dominated by [001]A facets [39]. 

Consequently, the delamination takes place in three 

perpendicular directions (see Scheme 2(d)). Primary 

anatase nanoparticles aligning in one specific orientation 

will be delaminated along the same direction, as shown 

in Scheme 2(b). Due to the bondage of the primary 

perpendicular interwoven structure of mc-TiO2,   

the NTO nanobelts are unable to move freely, but  

are arranged in parallel along the [100]N directions. 

Conversely, the epitaxially grown nanobelts extended 

outward are quite flexible. 

 

Figure 2 Morphology of 3D TiO2 transformed from 3D HTO. Low (a) and high (b) magnification TEM images, and the corresponding
SAED pattern (c). (d) A 3D model. Three different colors denote three special orientations of the nanobelt branches. (e) Nitrogen 
adsorption and desorption isotherm of 3D TiO2. Inset is the pore size distribution. 
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Scheme 1 Atomic models of the phase conversions. (a) Anatase 
along the [001]A direction. (b) The anatase was delaminated 
along the [001]A direction by breaking the long Ti–O bonds in (a). 
(c) NTO layer structure model along the [010]N direction. 

 

Scheme 2 Schematics of the transformation process and mechanism. 
(a) An overview of the transformation from the mc-TiO2 to 3D 
NTO, and then to 3D TiO2 nanoarchitectures. (b) Nanoparticles 
in mc-TiO2 (violet) undergo topotactic delamination and epitaxial 
growth to form NTO nanobelt arrays, and finally become TiO2 
nanobelt arrays. (c) Details of the epitaxial growth process in (b). 
(d) 3D crystallographic orientation relationships between the 
anatase nanoparticles in mc-TiO2 and nanobelts in 3D NTO. 

We conducted time-dependent control experiments 

(Fig. S6 in the ESM) to confirm that the delamination 

process starts from outside of the microcage and 

proceeds inward. The entire microcage can be 

completely delaminated to a completely nanobelts- 

constructed 3D nanoarchitecture after a 6-h reaction 

(Fig. 1). Regardless of the fabrication conditions, most 

reported sodium titanate nanotubes or nanoplates 

obtained via the alkaline hydrothermal method  

have similar thicknesses of 3–8 nm [49–51]. After  

the delamination and transformation processes, we 

confirmed that the thicknesses of our NTO nanobelts 

also fell within this range. With the ion exchange 

between Na+ and H+ (or H3O+), the lepidocrocite-type 

framework structure can be well preserved and the 

ultrathin nanobelts (with thicknesses of approximately 

6 nm) can be inherited [52–54]. Upon annealing, the 

layered HTO with a lepidocrocite-type framework 

structure will revert back to the anatase phase. During 

this process, the nanobelts-assembled 3D nano-

architecture persists due to its mimicking of the TiO6 

zigzag chain [41]. In short, the mc-TiO2 microcage 

precursor can be converted to a 3D Chinese knot-like 

TiO2 architecture, during which the 3D orientations 

of the building units (nanocrystallites to nanobelts) 

are well preserved (Scheme 2(a)). 

3.3 Li ion storage performances 

The electrochemical properties of the obtained 3D 

hierarchal nanobelt TiO2 for Li-ion storage is fully 

described in this section, and a comparison of the 

electrochemical performance between the product in 

this study and the pristine mc-TiO2 precursor is also 

discussed. Figure 3(a) shows the cyclic voltammograms 

(CVs) of the 3D TiO2 nanoarchitecture-composed 

lithium half-cell at a scan rate of 0.1 mV·s−1. Two 

primary redox peaks at 1.7 and 2.0 V originate from 

the lithiation/delithiation of anatase [55, 56], while 

the two pairs of weak redox peaks between 1.5 and 

1.7 V correspond to a small amount of TiO2-B in the 

material [57]. Some additional broad peaks between 

0.8 and 1.5 V that were observed in the first cycle and 

disappeared in subsequent cycles, can be attributed 

to irreversible reactions [58–60]. The second and third 

cycles highly overlap, thus confirming a stable storage 

and release of Li+ in subsequent cycles. The galvanostatic 

discharge/charge curves of the initial five cycles and 

the one-hundredth cycle at a current density of  
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100 mA·g−1 (0.5 C) are shown in Fig. S7(a) in the ESM. 

These curves can be divided into three lithiation steps, 

including a homogeneous lithium insertion into the 

bulk stage, a biphasic (Li-rich and Li-poor phases) 

plateau, and an interfacial lithium storage step, which 

is similar to a phenomenon reported previously [32, 40]. 

The interfacial lithium storage can be attributed to 

the anatase/TiO2-B interfaces, as discussed in our 

previous work [40]. During the first cycle, the discharge 

capacity reached approximately 350 mA·h·g−1, while 

the charge capacity was approximately 247 mA·h·g−1, 

resulting in an efficiency of 70.5%. This relatively low 

coulombic efficiency can be attributed to the small 

size of the nanobelts which induces surface side 

reactions and partially irreversible capacity loss [61]. 

In subsequent cycles, the coulombic efficiency increased 

and reached approximately 100%, indicating that the 

electrode stabilized, which is consistent with our  

CV measurements. Since the theoretical capacities  

of anatase and TiO2-B are 170 and 335 mA·h·g−1, 

respectively, the theoretical capacity of 3D TiO2 can 

be calculated to be 170 × 83.2% + 335 × 16.8% ≈ 

200 mA·h·g−1. The capacities of initial five cycles were 

larger than the theoretical value, which could be due 

to surface side reactions and extra interfacial lithium 

storage at the anatase/TiO2-B interfaces. The capacity 

slightly decreased during the initial 20 cycles and 

then stabilized to a value of 194 mA·h·g−1 (Fig. S7(b) in 

the ESM). The stable capacity of 3D TiO2 at 100 mA·g−1 

(0.5 C) and the calculated theoretical capacity are 

 

Figure 3 Li-ion storage properties. (a) Representative CV curves of 3D TiO2 nanoarchitectures at a scan rate of 0.1 mV·s−1 for the initial
three cycles. (b) Rate capability at various current densities. (c) Comparison of capacities of 3D TiO2 nanoarchitectures, dispersive TiO2

nanobelts, and previously reported AB550 [12] and mc-TiO2-400 [11] at various current rates. (d) Electrochemical impedance spectra
(Nyquist plots) of fresh electrodes at open circuit potentials. (e) Long-term cycling performance and coulombic efficiency of 3D TiO2

nanoarchitectures at a high current density of 10 A·g−1. 
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nearly equivalent. 

Figure 3(b) shows the rate capabilities of the 3D 

TiO2 nanoarchitecture as a function of current density 

from 100 mA·g−1 (0.5 C) to 10 A·g−1 (50 C). The 

average capacities are 270, 244, 222, 207, 193, 169,  

and 147 mA·h·g−1 at corresponding current densities 

as indicated in the figure. The pseudocapacitance of 

TiO2(B) and the interfacial storage of anatase/TiO2-B 

show an increasingly dominant role at high rates [32, 

40]. Therefore, the contributions of capacitive effects 

and diffusion-controlled reactions in the 3D TiO2 

material at different current densities were investigated 

using CV experiments. The CV curves, obtained at 

scan rates from 0.1 to 1 mV·s−1, and the corresponding 

results are shown in Fig. S8 in the ESM, and were 

determined using Eq. (1) [62] 

1/2

1 2
( )i V k v k v               (1) 

where k1v and k2v1/2 correspond to the current 

contributions from surface capacitive effects and the 

diffusion-controlled reactions, respectively. As predicted, 

the contribution of capacitive effects (red) increased 

with increased scan rate, from 73.2% at 0.1 mV·s−1   

to 91.2% at 1.0 mV·s−1, indicating that the pseudo-

capacitance plays a more significant role in fast 

lithium storage. For comparison, dispersive TiO2 

nanobelts were synthesized by a similar method with 

dispersive anatase nanoparticles as a precursor (Fig. S9 

in the ESM). A comparison of the rate capabilities of 

the 3D TiO2 nanoarchitecture material, dispersive 

TiO2 nanobelts, mc-TiO2-400 (obtained by annealing 

mc-TiO2 at 400 °C for 2 h) [39], and AB550 (anatase/ 

TiO2-B nanosheet-constructed microspheres) [40] is 

shown in Fig. 3(c). The 3D TiO2 nanoarchitecture 

displays higher rate capabilities than TiO2 nanobelts 

and mc-TiO2-400. Additionally, the 3D TiO2 nano-

architecture material also has capacities superior to 

those of AB550 when the current density is above 

1 A·g−1 (5 C), indicating that the 3D TiO2 nanoarchi-

tecture has better capacity retention and superior high 

rate capabilities during fast charge and discharge. 

This superiority is due to the 3D TiO2 nanoarchitecture 

with a unique core–shell and [001]A oriented structure, 

abundant anatase/TiO2-B interfacial lithium storage, 

and the ideal thickness (approximately 6 nm) of the 

nanobelts, which results in enhanced surface contact 

area, the ability of the material to accommodate 

strain caused by the penetration and transport of Li+, 

shortened Li+ diffusion length, and improved charge 

transport properties.  

The BET surface areas and pore size distributions 

of the three controlled samples were estimated based 

on their nitrogen adsorption–desorption isotherms, 

as displayed in Fig. 2(e), Fig. S10 and Table S1 in   

the ESM. The BET surface areas of 3D TiO2, AB550, 

mc-TiO2-400, and dispersive TiO2 nanobelts are 302, 

62.3, 79.1 and 247 m2·g−1, respectively, and 3D TiO2 

has the largest surface area apparently. While the 

dispersive TiO2 nanobelts have a similar surface area 

and pore structure to that of 3D TiO2, their inferior 

performance can be explained by their random 

arrangement compared to well-ordered architecture 

of 3D TiO2. The alternative current (AC) electrochemical 

impedance analysis was also carried out on the half-cells 

of these four materials to estimate the extrapolations, 

and the corresponding impedance Nyquist spectra 

are presented in Fig. 3(d). All these electrodes have 

comparable Nyquist plots with a depressed semicircle 

and an oblique line in the high and low-frequency 

ranges, respectively. We used an equivalent circuit 

(Fig. S11 in the ESM) to analyze the electronic interfacial 

parameters of the half-cells [63, 64]. Herein, Rb 

represents the resistance of the electrolyte, separator, 

and electrode. C1 and R1 value the effects of con-

ductivity, electrode roughness, and inhomogeneous 

reactions at the material surface. Rct is the charge 

transfer resistance between the electrolyte and electrode 

at the TiO2 anode surface; Zw is the Warburg resistance 

related to charge diffusion. The resultant values 

calculated based on the equivalent circuit are listed in 

Table S2 in the ESM. All these samples have similar 

Rb values (1–2 Ω), while the 3D TiO2 nanoarchitecture 

exhibits the smallest R1 (12.2 Ω), Rct (61.8 Ω) and Zw 

(120 Ω) values. Lithium diffusion coefficients in the 

four samples were also calculated based on the EIS 

results, as explained in the ESM [64, 65]. These results, 

shown in Figs. 3(b) and 3(c), strongly support the 

conclusion that 3D TiO2 nanoarchitecture offers 

improved electronic conductivity, electrolyte contact, 

and pseudocapacitance contribution at high rates.  
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Compared to other recently reported TiO2 nano-

structures, the 3D TiO2 material, without any further 

modifications, demonstrates high-quality electrode 

performance. This material has higher capacities than 

many carbon or graphene composited TiO2 and doped 

TiO2 nanostructures [21, 66–69]. The anatase-dominated 

3D TiO2 delivers comparable rate capacities to those 

reported for TiO2-B ultralong nanotubular materials 

[57]. Generally, TiO2-B with a layer structure possesses 

open channels that facilitate greater Li+ mobility,  

and the theoretical specific capacity of TiO2-B is 

335 mA·h·g−1 (corresponding to LiTiO2 as a final lithiated 

product), which is higher than that of anatase TiO2  

(~ 170 mA·h·g−1). Therefore, it is worth noting that 

creating anatase-dominated 3D TiO2 with comparable 

capacities to that of pure phase TiO2-B is a great 

achievement. As seen in Fig. S12 in the ESM, the 

excellent performance of 6-nm anatase nanoparticles 

further confirms that a dimension of 6 nm provides 

satisfactory electron pathways [22, 31]. C-doped TiO2 

multiple-phase nanocomposites (anatase, TiO2-B and 

TiC) [68], exhibited the highest capacities due to their 

enhanced conductivity as a result of carbon doping. 

Nevertheless, the approach of utilizing multiple 

phase interfaces in the C-doped TiO2 multiple-phase 

nanocomposite is consistent with our material  

design methodology, confirming that our strategy is 

appropriate for designing nanomaterials suitable for 

use in high-performance LIBs. 

The long-cycle stability of our 3D TiO2 nanoarchi-

tecture electrode system was evaluated. Figure 3(e) 

shows the discharge capacity and coulombic efficiency 

at a current density of 10 A·g–1 (50 C) up to 3,000 

cycles. The electrode exhibits a high initial capacity of 

166 mA·h·g−1 and a terminal capacity of 130 mA·h·g−1 

(with a retention of 76.5%) for over 3,000 cycles with 

approximately 100% coulombic efficiency after several 

initial cycles. The discharge/charge curves of 3D TiO2 

at 10 A·g−1 (50 C) at the 1st, 1,000th, 2,000th, and 3,000th 

cycles in Fig. S13 in the ESM exhibit the same curve 

shape and specific capacity, confirming a stable charge/ 

discharge process. The first cycle has a lower coulombic 

efficiency and larger discharge/charge potential 

difference than the rest cycles because the electrode 

undergoes an activation process at high current density  

and displays a stable discharge/charge performance 

over the remaining thousands of cycles. Compared  

to the reported TiO2 nanostructures (see details in 

Table S3 in the ESM), our 3D TiO2 electrode shows 

outstanding long-term stability and capacity retention, 

especially at high rates (in this case 10 A·g−1 or 50 C). 

Few reported TiO2 nanostructures are capable of 

maintaining a comparably high and stable capacity, 

as well as capacity retention at such a high current 

density. Moreover, after 1,000 cycles at 1 A·g–1 (5 C), 

the nanobelt morphology in 3D TiO2 is still preserved 

(Fig. S14 in the ESM), which suggests that 3D TiO2 is 

structurally stable. This result further proves that this 

unique nanoarchitecture with robust 3D perpendicular 

interwoven nanobelts can effectively uphold the 

structural integrity of the electrode during repeated 

cycles. It is believed that the nanobelts in this material 

can accommodate the strain during the spontaneous 

phase transformation between tetragonal anatase TiO2 

and orthorhombic LixTiO2 during lithiation/delithiation, 

which allows for consistent cycling stability [22]. All 

these results imply that our unique nanobelts-assembled 

3D TiO2 material is suitable for use in high-capacity 

and long-lasting LIB anodes, especially for high-rate 

(fast charging) applications. 

4 Conclusion 

In summary, a new type of 3D TiO2 nanoarchitecture, 

constructed by ultrathin and well-oriented nanobelts 

has been successfully synthesized from a TiO2 microcage 

(mc-TiO2) self-template, through a combined epitaxial 

growth and topotactic conversion approach. The 

obtained 3D TiO2 is composed entirely of nanobelts 

arranged in a core-branch morphology, resembling a 

3D Chinese knot. The rigid core effectively enhances 

the mechanical stability of the material, while the 

flexible shell nanobelts can offer sufficiently large 

surface areas to interact with an electrolyte and   

the adjacent nanoarchitectures effectively. The [001]A 

orientation of the nanobelts in three perpendicular 

directions facilitates the penetration and fast transport 

of Li+. As a result, the 3D TiO2 electrodes showed 

excellent rate capability and cycling stability with a 

high and stable capacity of 130 mA·h·g−1 at a current 

density of 10 A·g−1 (50 C) after 3,000 cycles. Therefore,  
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the unique orientation of the ultrathin nanobelts- 

assembled 3D TiO2 nanoarchitecture is well-suited to 

the application of fast-charging LIBs. 
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