Electronic Supplementary Material

Graphene oxide-decorated Fe₂(MoO₄)₃ microflowers as a promising anode for lithium and sodium storage

Chunhua Han¹ (🖂), Xiaoji Ren¹, Qidong Li¹, Wen Luo^{1,2}, Lei Huang¹, Liang Zhou¹, and Liqiang Mai^{1,†} (🖂)

¹ State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China

² Laboratoire de Chimie et Physique: Approche Multiéchelles des Milieux Complexes, Institut Jean Barriol, Université de Lorraine, 57070 Metz, France

[†] Present address: Department of Chemistry, University of California, Berkeley, California 94720, USA

Supporting information to https://doi.org/10.1007/s12274-017-1742-9

Figure S1 Raman spectra of FMO/GO, GO.

Figure S2 TG curve of FMO/GO.

Address correspondence to Liqiang Mai, mlq518@whut.edu.cn; Chunhua Han, hch5927@whut.edu.cn

Figure S3 (a, b) SEM images of FMO/GO.

Figure S4 SEM (a and b) and TEM (c) images of FMO.

Figure S5 The long-term cycling performance of FMO/GO at 1 A g^{-1} in LIBs.

Figure S6 Nyquist plots of FMO and FMO/GO in lithium storage.

Figure S7 Nyquist plots of FMO and FMO/GO in sodium storage.

Figure S8 SEM images of (a) FMO and (b) FMO/GO after 50 cycles in sodium storage.

Figure S9 XPS spectra of FMO when discharged to 0.01 V (a, b) and charged to 3 V (c, d).

Sample	Rate capability	Cycling stability	Reference
Fe ₂ (MoO ₄) ₃ /MCNCT	$600~\mathrm{mA}~\mathrm{h}~\mathrm{g}^{-1}$ at 1200 mA g^{-1}	1033 mA h g ^{-1} at 120 mA g ^{-1} (200 cycles)	S1
Fe ₂ Mo ₃ O ₈ -RGO		574 mA h g^{-1} at 3000 mA g^{-1} (40 cycles)	S2
FeMoO ₄ nanocubes	215 mA h g^{-1} at 2000 mA g^{-1}	926 mA h g^{-1} at 100 mA g^{-1} (80 cycles)	S3
CoMoO ₄ NP/RGO	$600~\mathrm{mA}~\mathrm{h}~\mathrm{g}^{-1}$ at 740 mA g^{-1}	600 mA h g^{-1} at 740 mA g^{-1} (600 cycles)	S4
MnMoO ₄ @C	362 mA h g $^{-1}$ at 5000 mA g $^{-1}$	$1000 \text{ mA h g}^{-1} \text{ at } 100 \text{ mA g}^{-1} (200 \text{ cycles})$	S5
NiMoO ₄	$600~\mathrm{mA}~\mathrm{h}~\mathrm{g}^{-1}$ at 3200 mA g^{-1}	1028 mA h g^{-1} at 200 mA g $^{-1}$ (120 cycles)	S6
Carbon-coated nanophase CaMoO ₄		508 mA h g^{-1} at 60 mA g^{-1} (20 cycles)	S7
Mn ₂ Mo ₃ O ₈ -graphene	671 mA h g ⁻¹ at 1500 mA g ⁻¹	950 mA h g^{-1} at 200 mA g^{-1} (40 cycles)	S8
FMO/GO	$685~\mathrm{mA}~\mathrm{h}~\mathrm{g}^{-1}$ at 10 A g^{-1}	1220 mA h g^{-1} at 200 mA g^{-1} (50 cycles)	our work

 Table S1
 Comparison of the results in this study with reported performance of transition metal molydbates in lithium storage.

 Table S2
 Comparison of the results in this study with reported performance of transition metal molydbates in sodium storage.

Sample	Rate capability	Cycling stability	Reference
Ag ₂ Mo ₂ O ₇	$100 \text{ mA h g}^{-1} \text{ at } 500 \text{ mA g}^{-1}$	$190 \text{ mA h g}^{-1} \text{ at } 20 \text{ mA g}^{-1} (70 \text{ cycles})$	S9
Na _{0.3} MoO ₂	65 mA h g^{-1} at 500 mA g $^{-1}$	$124 \text{ mA h g}^{-1} \text{ at } 20 \text{ mA g}^{-1} (50 \text{ cycles})$	S10
Bi ₂ (MoO ₄) ₃ /C	100 mA h g^{-1} at 3000 mA g $^{-1}$	$320 \text{ mA h g}^{-1} \text{ at } 150 \text{ mA g}^{-1} (100 \text{ cycles})$	S11
FMO/GO	107 mA h g^{-1} at 10 A g^{-1}	$307 \text{ mA h g}^{-1} \text{ at } 100 \text{ mA g}^{-1} (100 \text{ cycles})$	our work

References

- [S1] Pramanik, A.; Maiti, S.; Mahanty, S. Superior lithium storage properties of Fe₂(MoO₄)₃/MWCNT composite with a nanoparticle (0D)-nanorod (1D) hetero-dimensional morphology. *Chem. Eng. J.* 2016, 307, 239–248.
- [S2] Sun, Y. M.; Hu, X. L.; Luo, W.; Shu, J.; Huang, Y. H. Self-assembly of hybrid Fe₂Mo₃O₈-reduced graphene oxide nanosheets with enhanced lithium storage properties. *J. Mater. Chem. A* 2013, *1*, 4468–4474.
- [S3] Ju, Z. C.; Zhang, E.; Zhao, Y. L.; Xing, Z.; Zhuang, Q. C.; Qiang, Y. H.; Qian, Y. T. One-pot hydrothermal synthesis of FeMoO₄ nanocubes as an anode material for lithium-ion batteries with excellent electrochemical performance. *Small* 2015, 11, 4753–4761.
- [S4] Yao, J. Y.; Gong, Y. J.; Yang, S. B.; Xiao, P.; Zhang, Y. H.; Keyshar, K.; Ye, G. L.; Ozden, S.; Vajtai, R.; Ajayan, P. M. CoMoO₄ nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 20414–20422.
- [S5] Guan, B. Q.; Sun, W. W.; Wang, Y. Carbon-coated MnMoO₄ nanorod for high-performance lithium-ion batteries. *Electrochim. Acta* 2016, 190, 354–359.
- [S6] Wang, B.; Li, S. M.; Wu, X. Y.; Tian, W. M.; Liu, J. H.; Yu, M. Integration of network-like porous NiMoO₄ nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage. J. Mater. Chem. A 2015, 3, 13691–13698.
- [S7] Sharma, N.; Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R.; Dong, Z. L.; White, T. J. Carbon-coated nanophase CaMoO₄ as anode material for Li ion batteries. *Chem. Mater.* 2004, 16, 504–512.
- [S8] Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Hierarchical self-assembly of Mn₂Mo₃O₈-graphene nanostructures and their enhanced lithium-storage properties. *J. Mater. Chem.* 2011, 21, 17229–17235.
- [S9] Chen, N.; Gao, Y.; Zhang, M. N.; Meng, X.; Wang, C. Z.; Wei, Y. J.; Du, F.; Chen, G. Electrochemical properties and sodiumstorage mechanism of Ag₂Mo₂O₇ as the anode material for sodium-ion batteries. *Chem.–Eur. J.* 2016, 22, 7248–7254.
- [S10] Zhu, K.; Guo, S. H.; Yi, J.; Bai, S. Y.; Wei, Y. J.; Chen, G.; Zhou, H. S. A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries. J. Mater. Chem. A 2015, 3, 22012–22016.
- [S11] Sottmann, J.; Herrmann, M.; Vajeeston, P.; Ruud, A.; Drathen, C.; Emerich, H.; Wragg, D. S.; Fjellvåg, H. Bismuth vanadate and molybdate: Stable alloying anodes for sodium-ion batteries. *Chem. Mater.* 2017, 29, 2803–2810.