Electronic Supplementary Material

Microstructuring of carbon/tin quantum dots via a novel photolithography and pyrolysis-reduction process

Xufeng Hong¹, Liang He^{1,2} (云), Xinyu Ma¹, Wei Yang¹, Yiming Chen¹, Lei Zhang¹, Haowu Yan¹, Zhaohuai Li¹, and Ligiang Mai^{1,3} (云)

¹ State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

² Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA

³ Department of Chemistry, University of California, Berkeley, CA 94720, USA

Supporting information to DOI 10.1007/s12274-017-1587-2

Figure S1 The design and dimension of the interdigital microelectrodes based MSC, the area of the interdigital microelectrodes is 0.0927 cm^2 .

Address correspondence to Liang He, hel@whut.edu.cn; Liqiang Mai, mlq518@whut.edu.cn

Figure S2 SEM images of SnO₂ microspheres. The inset shows the corresponding high-magnification SEM image.

Figure S3 Experimental and theoretical XRD patterns of the synthesized SnO₂ microspheres.

Figure S4 HRTEM image of carbon/Sn QDs microelectrode.

TSINGHUA Springer | www.editorialmanager.com/nare/default.asp

Figure S5 SEM cross-section image of carbon/Sn QDs microelectrode.

 Table S1
 The electrochemical performance of other nanocarbon-based MSCs

Precursor	Atmosphere	Electrolyte	Specific capacitance	Refs.
SPR-220 photoresist	H ₂ /Ar (10%/90%)	Ionogel	$0.6 \text{ mF} \cdot \text{cm}^{-2} \text{ at } 0.01 \text{ V} \cdot \text{s}^{-1}$	[S1]
SPR-220-7 photoresist	H ₂ /Ar (10%/90%)	3.5 M KCl aqueous	$3.5 \text{ mF} \cdot \text{cm}^{-2} \text{ at } 0.01 \text{ V} \cdot \text{s}^{-1}$	[S2]
TiC	Cl ₂	1 M NEt ₄ BF ₄	1.5 mF·cm ^{-2} at 0.1 V·s ^{-1}	[S3]
Activated carbon/PTFE	—	1 M Et ₄ BF ₄	2.1 mF·cm ⁻² at 0.001 V·s ⁻¹	[S4]
CNTs	—	Ionogel	$0.43 \text{ mF} \cdot \text{cm}^{-2} \text{ at } 0.1 \text{ V} \cdot \text{s}^{-1}$	[85]
Polyimide	—	PVA-H ₃ PO ₄	0.8 mF·cm ⁻² at 0.01 V·s ⁻¹	[S6]

References

- [S1] Wang, S.; Hsia, B.; Carraro, C.; Maboudian, R. High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. J. Mater. Chem. A 2014, 2, 7997–8002.
- [S2] Hsia, B.; Kim, M. S.; Vincent, M.; Carraro, C.; Maboudian, R. Photoresist-derived porous carbon for on-chip micro-supercapacitors. *Carbon* 2013, 57, 395–400.
- [S3] Huang, P. H.; Heon, M.; Pech, D.; Brunet, M.; Taberna, P.-L.; Gogotsi, Y.; Lofland, S.; Hettinger, J. D.; Simon, P. Microsupercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 2013, 225, 240–244.
- [S4] Pech, D.; Brunet, M.; Taberna, P.-L.; Simon, P.; Fabre, N.; Mesnilgrente, F.; Conédéra, V.; Durou, H. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 2010, 195, 1266–1269.
- [S5] Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. *Nanotechnology* 2014, 25, 055401.
- [S6] In, J. B.; Hsia, B.; Yoo, J. H.; Hyun, S.; Carraro, C.; Maboudian, R.; Grigoropoulos, C. P. Facile fabrication of flexible all solidstate micro-supercapacitor by direct laser writing of porous carbon in polyimide. *Carbon* 2015, *83*, 144–151.