Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.201601582

Thermal Induced Strain Relaxation of 1D Iron Oxide for Solid Electrolyte Interphase Control and Lithium Storage Improvement

Kangning Zhao, Mingying Wen, Yifan Dong, Lei Zhang, Mengyu Yan, Wangwang Xu, Chaojiang Niu, Liang Zhou,* Qiulong Wei, Wenhao Ren, Xuanpeng Wang, and Liqiang Mai* Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

Thermal Induced Strain Relaxation for Solid Electrolyte Interphase Control and Lithium Storage Improvement

Kangning Zhao^{§a}, Mingying Wen^{§a}, Yifan Dong^{§ab}, Lei Zhang^a, Mengyu Yan^a, Wangwang Xu^c,
Chaojiang Niu^a, Liang Zhou^{*a}, Qiulong Wei^a, Wenhao Ren^a, Xuanpeng Wang^a, Liqiang Mai^{*a}
K.N. Zhao^a, M.Y. Wen^a, Y.F. Dong^a, L. Zhang^a, M.Y. Yan^a, W.W. Xu^a, C.J. Niu^a, Prof. L.
Zhou^a, Q.L. Wei^a, W.H. Ren^a, X.P. Wang^a, Prof. L. Q. Mai^a
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology
Wuhan 430070, China
Y.F. Dong^b
Department of Chemistry, University of Wisconsin-Madison, WI 53706, USA.
W.W. Xu^c
Department of Mechanical and Industrial Engineering, Louisiana State University, Baton
Rouge, LA, USA
E-mail: mlg518@whut.edu.cn (L. Q. Mai); liangzhou@whut.edu.cn(L, Zhou)

Keywords: Thermal induced strain relaxation; Solid Electrolyte Interphase Control;

Template-engaged Reaction; One-dimensional nanostructure; Lithium storage

The calculation of the standard potential.

The half reaction can be described as follows:

$$MnOOH + 3 H^+ + e^- = Mn^{2+} + 2 H_2O$$

According to the literature reported (J. D. Hem, C. E. Roberson and R. B. Fournier, *Water Resources Research*, 1982, 18, 563.), the Gibbs Free energy of each component is shown below:

 $\Delta G_{MnOOH}^{\Theta} = -129.80 \text{ kcal/mol} \quad \Delta G_{Mn^{2+}}^{\Theta} = -54.50 \text{ kcal/mol} \quad \Delta G_{H_2O}^{\Theta} = -56.69 \text{ kcal/mol}$

The Gibbs Free energy of the reaction is below:

$$\Delta G_{\text{Total}}^{\Theta} = \Delta G_{\text{Mn}^{2+}}^{\Theta} + 2 \Delta G_{\text{H}_2\text{O}}^{\Theta} - \Delta G_{\text{MnOOH}}^{\Theta} = -38.08 \text{ kcal/mol} = -159.40 \text{ kJ/mol}$$

According to Nernst Equation ($\Delta G_{Total}^{\Theta} = -zF\Delta E^{\Theta}$), the standard potential can be obtained:

$$\Delta E^{\Theta} = \Delta G^{\Theta}_{\text{Total}} / (-zF) = 1.65 \text{ V}$$

Thus the two half reactions are shown below:

Half reaction 1: MnOOH + 3 H⁺ + e^- = Mn²⁺ + 2 H₂O ΔE^{Θ} = 1.65 V

Half reaction 2: $Fe^{3+} + e^{-} = Fe^{2+} \Delta E^{\Theta} = 0.771 V$

		L
--	--	---

	Current	2nd	Cycle	Capacity fading per	Rate	
	Density	Capacity	number	cycle(vs. 2nd Capacity)	performance	Reference
Ladder-like						
For Or	5	060	1200	0 027 %	783 mA h g^{-1}	This work
	5	900	1200	0.027 /0	at 5 A g^{-1}	THIS WOLK
nanostructures						
Multi-shelled						
1 11	0.05	1700	50	0.022.0/	1100 mA h	1
nollow	0.05	1/23	50	0.023 %	σ^{-1} at 1 A σ^{-1}	1
microspheres					5	

3D Hierarchical					705.4 mA h	
Porous α -Fe ₂ O ₃	2.012	~750	1000	/(Capacity increase)	g^{-1} at 4 A g^{-1}	2
Nanosheets					8	
Bubble-Nanorod-						
Structured	1	069	200	0.054.9/	491 mA h g^{-1}	2
Fe ₂ O ₃ -Carbon	1	908	300	0.034 70	at 5 A g^{-1}	3
Nanofibers						
Fe ₃ O ₄ @Fe ₃ C						
Core@Shell	2	624	400	0.0360%	604.8 mA n	4
Nanoparticles					g ⁺ at 2 A g ⁺	
	2.014	~810			550 mA h g^{-1}	5
α-Fe ₂ O ₃ /HHC			200	0.160%	at 2 A g^{-1}	
Hollow Fe ₂ O ₃						
nanosphere	3	~1000	100	0.0486%	505 mA h g^{-1}	6
aggregates					at 10 A g^{-1}	
Fe ₂ O ₃ /GS					520 mA h g^{-1}	
Aerogels	2	~1200	1000	0.0389%	at 4 A g^{-1}	7
					962 mA h g^{-1}	
Fe ₂ O ₃ @CHTS	0.2	1149	70	0.0286%	at 0.8 A g^{-1}	8
Fe ₂ O ₃ /Fe ₃ C-						
graphene					518 mA h g^{-1}	
heterogeneous	2.61	573	1000	0.0100%	at 6.6 A g^{-1}	9
thin film						
					681 mA h g^{-1}	
Fe ₂ O ₃ @PANI	0.1	958	100	0.0678%	at 10 A g^{-1}	10
					e	

Figure S1. (a) XRD pattern of MnOOH nanowires. (b, c) SEM images of MnOOH nanowires.

(d) XRD pattern of Fe(OH)₃ nanotubes. (e, f) SEM images of Fe(OH)₃ nanotubes.

Figure S2. TEM images of Fe(OH)₃ nanotubes.

Reaction time	Mn/Fe atomic ratio
10 min	13.35:5.25
30 min	1.13:3.81
1 h	0.25:1.92
2 h	0.18:3.07
6 h	0.13:5.61
12 h	0:4.43

Table S2

Figure S3. (a-f) EDX spectrum of the products at time of 10 min (a), 30 min (b), 1 h (c), 2 h (d), 6 h (e), and 12 h (f), respectively.

Figure S4. (a, b) SEM images of products in pure alcohol. (c, d) SEM images of products in

pure water.

Figure S5. XRD pattern of (a) α -Fe₂O₃-500(hierarchal nanotubes), (b) α -Fe₂O₃-600 (hierarchal nanotubes), (c) α -Fe₂O₃-700(porous nanotubes), and (d) α -Fe₂O₃-800 (laddered

nanostructure), respectively.

Figure S6. Nitrogen adsorption–desorption isotherms of (a) α-Fe₂O₃-500(hierarchal nanotubes), (b) α-Fe₂O₃-600 (hierarchal nanotubes), (c) α-Fe₂O₃-700(porous nanotubes), and (d) α-Fe₂O₃-800 (laddered nanostructure), respectively.

Figure S7. HRTEM images of (a) α -Fe₂O₃-500(hierarchal nanotubes), (b) α -Fe₂O₃-600 (hierarchal nanotubes), (c) α -Fe₂O₃-700(porous nanotubes), and (d) α -Fe₂O₃-800 (laddered nanostructure), respectively.

Figure S8. Rietveld refinement XRD pattern of α -Fe₂O₃-500 (hierarchal nanotubes), α -Fe₂O₃-600 (porous hierarchal nanotubes), α -Fe₂O₃-700 (porous nanotubes), and α -Fe₂O₃-800

(laddered nanostructure).

	a (Å)	c (Å)	Cell Volume (Å ³)	Lvol- FWHM	e ₀	Rwp (%)
α-Fe ₂ O ₃ - 500	5.043(6)	13.778(6)	303.54797	8.745	0.00260	3.363
α-Fe ₂ O ₃ - 600	5.038(1)	13.756(1)	302.38801	19.490	0.00164	3.136
α-Fe ₂ O ₃ - 700	5.037(5)	13.741(2)	301.99214	27.168	0.00068	3.808
α-Fe ₂ O ₃ - 800	5.040(8)	13.755(4)	302.69753	33.962	0.00012	3.884
a		b • • ~ • •		C C C C Na		CINa
•		•				

Figure S9. Schematic illustrations of the defect-free NaCl structure (a), Schottky defects

within the NaCl structure (b), and two Frenkel defects within the NaCl structure (c).

Figure S10. (a) Crystal structure of α-Fe₂O₃. (b) Particle size vs. strain. (c) Particle size vs. Fe occupation. (d) Particle size vs. cell volume.

Figure S11. SEM images of α -Fe₂O₃-800 when discharged 0.01 V in the initial cycle.

Figure S12. SEM images of α -Fe₂O₃-500 when discharged 0.01 V in the initial cycle.

Figure S13. (a, b) SEM images of α -Fe₂O₃-800 after 10 cycles. (c, d) SEM images of α -Fe₂O₃-

500 after 10 cycles.

Figure S14. (a) SEM images of α-Fe₂O₃-800 after the first cycle. (b) SEM images of α-Fe₂O₃-800 after ten cycles. (c) SEM images of α-Fe₂O₃-500 after the first cycle. (d) SEM images of α-Fe₂O₃-500 after ten cycles. Insets are magnified SEM images. (e, f) AC impedance response of α-Fe₂O₃-800 and α-Fe₂O₃-500 after first, second, and tenth cycle, respectively

	$R_1(\Omega)$	$R_{2}\left(\Omega ight)$	$R_3(\Omega)$
α -Fe ₂ O ₃ -800-1st cycle	2.6	2.4	10.5
α -Fe ₂ O ₃ -800-2nd cycle	2.9	2.8	10.6
α -Fe ₂ O ₃ -800-10th cycle	5.0	4.7	10.4
α -Fe ₂ O ₃ -500-1st cycle	2.7	2.5	32.7
α -Fe ₂ O ₃ -500-2nd cycle	2.9	2.8	47.7
α -Fe ₂ O ₃ -500-10th cycle	5.6	113.5	184.3

Table S4

Figure S15. Cycling performances of α -Fe₂O₃-500 (hierarchal nanotubes), α -Fe₂O₃-600 (hierarchal nanotubes), α -Fe₂O₃-700 (porous nanotubes), and α -Fe₂O₃-800 (laddered

nanostructure) at 2 A g⁻¹.

Figure S16. Charge-discharge curves of (a) α -Fe₂O₃-500 (hierarchal nanotubes), (b) α -Fe₂O₃-600 (porous hierarchal nanotubes), (c) α -Fe₂O₃-700 (porous nanotubes), and (d) α -Fe₂O₃-800

(laddered nanostructure) at 2 A g^{-1} .

Figure S17. the surface area vs. intial discharge capacity.

Figure S18. AC impedance responses of α -Fe₂O₃-500 (hierarchal nanotubes), α -Fe₂O₃-600 (porous hierarchal nanotubes), α -Fe₂O₃-700 (porous nanotubes), and α -Fe₂O₃-800 (laddered

- S. M. Xu, C. M. Hessel, H. Ren, R. B. Yu, Q. Jin, M. Yang, H. J. Zhao, D. Wang, α-Fe₂O₃ multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention, Energy Environ. Sci., 2014, 7, 632-637
- Cao K, Jiao L, Liu H, et al. 3D Hierarchical Porous α-Fe₂O₃ Nanosheets for High-Performance Lithium-Ion Batteries[J]. Advanced Energy Materials, 2015, 5(4).
- Cho J S, Hong Y J, Kang Y C. Design and Synthesis of Bubble-Nanorod-Structured Fe₂O₃–Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries[J]. ACS nano, 2015, 9(4): 4026-4035.
- Beyond Yolk–Shell Nanoparticles: Fe₃O₄@Fe₃C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage, ACS Nano, 2015, 9 (3), pp 3369–3376
- Dong H, Zhang H, Xu Y, et al. Facile synthesis of α-Fe₂O₃ nanoparticles on porous human hair-derived carbon as improved anode materials for lithium ion batteries[J]. Journal of Power Sources, 2015, 300: 104-111.

- Jung Sang Cho, Young Jun Hong, Jong-Heun Lee and Yun Chan Kang, Design and synthesis of micron-sized spherical aggregates composed of hollow Fe₂O₃ nanospheres for use in lithium-ion batteries, Nanoscale, 2015, 7, 8361-8367
- Wang R, Xu C, Du M, et al. Solvothermal-Induced Self-Assembly of Fe₂O₃/GS Aerogels for High Li-Storage and Excellent Stability[J]. Small, 2014, 10(11): 2260-2269.
- Gao G, Yu L, Wu H B. Hierarchical Tubular Structures Constructed by Carbon-coated α-Fe₂O₃ Nanorods for Highly Reversible Lithium Storage[J]. Small, 2014, 10(9): 1741-1745.
- Yang Y, Fan X, Casillas G, et al. Three-dimensional nanoporous Fe₂O₃/Fe₃C-graphene heterogeneous thin films for lithium-ion batteries[J]. ACS nano, 2014, 8(4): 3939-3946.
- Jeong J M, Choi B G, Lee S C, et al. Hierarchical hollow spheres of Fe₂O₃@ polyaniline for lithium ion battery anodes[J]. Advanced Materials, 2013, 25(43): 6250-6255.