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Figure S1 The XPS spectrum of (a) AVO octahedrons and (b) 3D porous V2O5 octahedrons calcined at 500 °C 

 

Figure S2 FESEM images of the porous V2O5 octahedrons calcined at 350 °C. 
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Figure S3 The fracture surface images of broken octahedron particles. 

 

Figure S4 EDS mapping of the 3D porous V2O5 octahedrons annealed at 500 °C. 

 

Figure S5 Pictures of the 3D porous V2O5 octahedrons (left) and V2O5 nanowires (right). Each vial contains 0.3765 g of tightly 
packed product. 

 

Figure S6 FESEM images of the products after solvothermal reaction with 0 g (a), 1 g (b) and 2 g (c) of urea. 
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Figure S7 Nitrogen adsorption–desorption isotherms and corresponding pore size distribution (inset) of ammonium vanadium oxide 
octahedrons (a) and porous V2O5 octahedrons annealed at 350 °C (b), 500 °C (c) and 600 °C (d). 

 

Figure S8 (a) Cycling performance and (b) discharge/charge curves of the first cycle of 3D porous V2O5 annealed at 350 °C at a 
current density of 100 mA·g–1 in the potential range from 2.0 to 4.0 V. 
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Table S1 The electrochemical performances (cycling performance at relevant current rate or density, and rate capability) of the 3D 
porous V2O5 octahedrons and the reported V2O5 materials 

Sample Voltage 
range (V) 

Capacity (mAh·g–1)/ 
Cycle number 

Current rate or 
density 

Rate capacity (mAh·g–1) at 
relevant current rate or density 

As-prepared 3D porous V2O5 
octahedrons in this work 

2.4–4  93/500 2 A·g–1 96 at 2 A·g–1 

V2O5 microspheres1 2.5–4 ~ 135/100 ~ 0.3 A·g–1 92.2 at 2.25 A·g–1 

3D porous V2O5 microspheres2 2.5–4 118/100 1.5 A·g–1 105 at 4.5 A·g–1 

Porous V2O5 nanotubes3 2.5–4 105/250 2 A·g–1 62.5 at 15 A·g–1  

3D porous V2O5
4 2.5–4 110/200 1.5 A·g–1 86.7 at 8.4 A·g–1 

(charged at 0.15 A·g–1) 

hierarchical V2O5 hollow 

microspheres5 
2.5–4 128/50 0.3 A·g–1 125 at 1.2 A·g–1 
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