Electronic Supplementary Material

Three-dimensional porous V₂O₅ hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries

Qinyou An[§], Pengfei Zhang[§], Fangyu Xiong[§], Qiulong Wei, Jinzhi Sheng, Qinqin Wang, and Liqiang Mai (🖂)

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, WUT–Harvard Joint Nano Key Laboratory, Wuhan University of Technology, Wuhan, Hubei 430070, China

[§] These authors contributed equally to this work. All authors discussed the results and commented on the manuscript. The authors declare no competing financial interest.

Supporting information to DOI 10.1007/s12274-014-0638-1

Figure S1 The XPS spectrum of (a) AVO octahedrons and (b) 3D porous V_2O_5 octahedrons calcined at 500 °C

Figure S2 FESEM images of the porous V_2O_5 octahedrons calcined at 350 °C.

Address correspondence to mlq518@whut.edu.cn

TSINGHUA Springer

Figure S3 The fracture surface images of broken octahedron particles.

Figure S4 EDS mapping of the 3D porous V_2O_5 octahedrons annealed at 500 °C.

Figure S5 Pictures of the 3D porous V_2O_5 octahedrons (left) and V_2O_5 nanowires (right). Each vial contains 0.3765 g of tightly packed product.

Figure S6 FESEM images of the products after solvothermal reaction with 0 g (a), 1 g (b) and 2 g (c) of urea.

Figure S7 Nitrogen adsorption–desorption isotherms and corresponding pore size distribution (inset) of ammonium vanadium oxide octahedrons (a) and porous V_2O_5 octahedrons annealed at 350 °C (b), 500 °C (c) and 600 °C (d).

Figure S8 (a) Cycling performance and (b) discharge/charge curves of the first cycle of 3D porous V_2O_5 annealed at 350 °C at a current density of 100 mA·g⁻¹ in the potential range from 2.0 to 4.0 V.

Sample	Voltage range (V)	Capacity (mAh·g ⁻¹)/ Cycle number	Current rate or density	Rate capacity $(mAh \cdot g^{-1})$ at relevant current rate or density
As-prepared 3D porous V ₂ O ₅ octahedrons in this work	2.4-4	93/500	$2 \text{ A} \cdot \text{g}^{-1}$	96 at 2 $A \cdot g^{-1}$
V ₂ O ₅ microspheres ¹	2.5–4	~ 135/100	$\sim 0.3 \; A{\cdot}g^{-1}$	92.2 at 2.25 $A \cdot g^{-1}$
3D porous V ₂ O ₅ microspheres ²	2.5–4	118/100	$1.5 \mathrm{A}{\cdot}\mathrm{g}^{-1}$	105 at 4.5 $A \cdot g^{-1}$
Porous V ₂ O ₅ nanotubes ³	2.5–4	105/250	$2 \text{ A} \cdot \text{g}^{-1}$	62.5 at 15 $A \cdot g^{-1}$
$3D$ porous $V_2O_5^4$	2.5–4	110/200	$1.5 \mathrm{A}{\cdot}\mathrm{g}^{-1}$	86.7 at 8.4 $A \cdot g^{-1}$ (charged at 0.15 $A \cdot g^{-1}$)
hierarchical V_2O_5 hollow microspheres ⁵	2.5–4	128/50	$0.3 \ \mathrm{A} \cdot \mathrm{g}^{-1}$	125 at 1.2 $A \cdot g^{-1}$

Table S1 The electrochemical performances (cycling performance at relevant current rate or density, and rate capability) of the 3D porous V_2O_5 octahedrons and the reported V_2O_5 materials

References

- [S1] Wang, S. Q.; Lu, Z. D.; Wang, D.; Li, C. G.; Chen, C. H.; Yin, Y. D. Porous monodisperse V₂O₅ microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 2011, 21, 6365–6369.
- [S2] Zhang, C. F.; Chen, Z. X.; Guo, Z. P.; Lou, X. W. Additive-free synthesis of 3D porous V₂O₅ hierarchical microspheres with enhanced lithium storage properties. *Energy Environ. Sci.* 2013, 6, 974–978.
- [S3] Wang, H. G.; Ma, D. L.; Huang, Y.; Zhang, X. B. Electrospun V₂O₅ nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. *Chem. Eur. J.* 2012, *18*, 8987–8993.
- [S4] Wang, S. Q.; Li, S. R.; Sun, Y.; Feng, X. Y.; Chen, C. H. Energy Environ. Sci. 2011, 4, 2854–2857.
- [S5] Pan, A. Q.; Zhu, T.; Wu, H. B.; Lou, X. W. Template-free synthesis of hierarchical vanadium-glycolate hollow microspheres and their conversion to V₂O₅ with improved lithium storage capability. *Chem. Eur. J.* 2013, 19, 494–500.