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Experimental section 

1.1 Synthesis of FexNi-POMo catalysts. 

Its synthesis method refered to our previous work,
[1]

 and the carbon substrate was simply replaced 

with nickel foam of the same size. In a typical synthesis of Ni-POMo catalyst, (NH4)6Mo7O24·4H2O 

(0.6 g), Ni(NO3)2·6H2O (0.4 g), 2-Methylimidazole (1 g) were added in methanol (70 mL). After 

stirring, the mixture and a piece of nickel foam (4 cm × 3 cm) was transfered into 100 mL 

Teflon-lined stainless-steel autoclave. After reaction at 160 °C for 20 h, the powder and nickel foam 

samples were washed with ethanol and dried for overnight. For the synthesis of FexNi-POMo (x = 

0.036, 0.052, 0.094), different molar ratios of Fe/Ni nitrate salts (5:1, 4:2, 3:3) were added, 

respectively. For the synthesis of Fe-POMo, the Ni(NO3)2·6H2O was replaced with Fe(NO3)3·9H2O. 

Noted that the total number of moles of Ni/Fe salts remained consistent during the synthesis of each 

sample.  
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1.2 Characterizations. 

Scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDS) 

were collected using a JEOL-7100F microscope at an acceleration voltage of 15 kV. Microscopy 

images, selected area electron diffraction (SAED) patterns, and elemental mappings were collected 

on JEM-2100F and Thermo Fisher Scientific Titan G260-300 scanning/transmission electron 

microscopes. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic 

emission spectrometry (ICP-AES) measurements were carried out using an ESCALAB 250Xi 

instrument and PerkinElmer Optima 4300DV spectrometer, respectively. In/ex situ Raman spectra 

were recorded using a HORIBA HR EVO Raman system with an excitation wavelength of 633 nm. 

The temperature of solution was measured by a digital thermometer. 

1.3 Electrochemical measurements. 

All electrochemical measurements were carried out in a standard three-electrode setup which was 

connected to an electrochemical workstation (CHI760E). The nickel foam samples, Hg/HgO 

electrode, and graphite rod were used as working electrode, reference electrode, and counter 

electrode, respectively. There were two kinds of test conditions, one was 1 M KOH solution at room 

temperature, and the other was 30 wt.% KOH solution at 60.9 °C. For each kind of present data, the 

test conditions were indicated. All potentials for CV and LSV surves were converted to the RHE 

scale and iR-corrected by the resistance of electrolyte. 

In situ electrochemistry-Raman tests were carried out using a HORIBA HR EVO Raman system 

(633 nm laser) and an electrochemical workstation of CHI760E. The new Hg/HgO and carbon rod 

were employed as the reference and counter electrodes, respectively. The Fe0.052Ni-POMo arrays on 

the nickel foam directly served as working electrode. The LSV was tested at a scan rate of 0.2 mV 

s
−1

 in 1 M KOH at room temperature. Meanwhile, the Raman spectra were recorded with a potential 

interval of 30 mV. 
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Figure S1. Morphology characterizations using different Ni/Mo-based sources or solvents as a 

single variable. a-c) SEM images of powders using different Ni-based sources. d-f) SEM images of 

powders using different Mo-based sources. g-i) SEM images of powders using different solvents. 

 

Figure S2. a-d) SEM images of FexNi-POMo (x = 0, 0.036, 0.052, 0.094) powders. e-h) SEM 

images of FexNi-POMo (x = 0, 0.036, 0.052, 0.094) grown on the nickel foam. 
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Figure S3. Size distributions of FexNi-POMo (x = 0, 0.036, 0.052) nanowires measured on the 

HADDF-STEM images in Figure 2b-d. 

In detail, the measured diameters of Fe0Ni-POMo, Fe0.036Ni-POMo, and Fe0.052Ni-POMo nanowires 

range from 17.0 to 35.0 nm, from 20.2 to 40.9 nm, from 11.7 to 24.3 nm, respectively. 

 

Figure S4. XRD pattern of Fe0.052Ni-POMo powders. 

 

Figure S5. a,b) SEM images of Fe-POMo powders and nickel foam sample, respectively. 
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Figure S6. a-c) TEM images of FexNi-POMo (x = 0, 0.036, 0.052) nanowires and their 

corresponding d-f) HRTEM and g-i) HAADF-STEM images. 
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Figure S7. OER activation in 1 M KOH at room temperature. a-d) The initial 30-cycle CV 

curves of FexNi-POMo (x = 0, 0.036, 0.052, 0.094) in 0-0.8 V vs. Hg/HgO at 50 mV s
−1

, 

respectively. 

 

Figure S8. OER activity in 1 M KOH at room temperature. LSV curves of FexNi-POMo 

normalized by (a) geometric area and (b) ECSA, respectively. 
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Figure S9. Chronopotentiometric curve of Fe0Ni-POMo at 10 mA cm
−2

 in 1 M KOH at room 

temperature. 

 

Figure S10. The recorded LSV curves during in situ Raman test at a scan rate of 0.2 mV s
−1

. 

 

Figure S11. Fe 2p XPS spectra of Fe0.052Ni-POMo initially, after CV activation, and after OER for 

500 h. 
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Figure S12. a) Molar ratios of Ni/K, Fe/K, and Mo/K in solution after soaking Fe0.052Ni-POMo 

arrays in 1 M KOH for 32 s. b) Molar ratios of Ni/K, Fe/K, and Mo/K in solution after different CV 

cycle time of Fe0.052Ni-POMo arrays in 1 M KOH. 

 

Figure S13. a,b) HRTEM images of activated Fe0.052Ni-POMo and NiFe-LDH after 30-cycle CV 

tested in the potential range of 0-0.8 V vs. Hg/HgO in 1 M KOH, respectively. c,d) SAED patterns of 

activated Fe0.052Ni-POMo and NiFe-LDH, respectively. e) ECSA-normalized LSV curves. 
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Table S1. Semiquantitative SEM-EDS elemental analysis of MoNi-2-mim powders using different 

nickel salts, molybdenum-based compounds or different solvents. 

Raw materials Mo molar content (%) Ni molar content (%) 

Ni sources 

Ni(NO3)2·6H2O 56.54 43.46 

NiCl2·6H2O 56.29 43.71 

Ni(Ac)2·4H2O 57.07 42.93 

Mo sources 

(NH4)6Mo7O24·4H2O 57.60 42.40 

MoO3 59.79 40.21 

NaMoO4·2H2O 56.85 43.15 

Solvents 

Methanol 56.54 43.46 

N,N-Dimethylformamide 56.36 43.64 

N-Methyl pyrrolidone 57.07 42.93 

Table S2. Summary of OER performance for Fe0.052Ni-POMo in this work and other reported POM 

catalysts or their derivates. 

Catalysts 
Testing 

conditions 
OER activity 

Tafel slope 

(mV dec−1) 
Stability (h) References 

Fe0.052Ni-POMo on the nickel foam 1 M KOH 
255.3±1.6 mV at 

10 mA cm−2 
43.8 

545 h at 10 

mA cm−2 
This work 

Oxygenated-CoS2-MoS2 

heteronanosheets (derived from 

(NH4)4[M
IIMo6O24H6]·6H2O 

polyoxometalates)[2] 

1 M KOH 
272 mV at 10 mA 

cm−2 
45 

10 h at 1.53 

VRHE 

ACS Catal. 2018, 

8, 4612 

[Co6.8Ni1.2W12O42(OH)4(H2O)8] on the 

nickel foam[3] 

0.1 M KOH 

(pH of 13) 

360 mV at 10 mA 

cm−2 
126 

10 h at 1.67 

VRHE 

Angew. Chem., 

Int. Ed. 2017, 56, 

4941 

Co6Mo6C2/NCRGO (derived from 

Co-doped 

polyoxometalate/conductive 

polymer/graphene oxide)[4] 

1 M KOH 
260 mV at 10 mA 

cm−2 
50 

2000 CV 

cycles 

ACS Appl. Mater. 

Interfaces 2017, 

9, 16977 

40% Ba[Co-POM][5] 1 M H2SO4 
361 mV at 10 mA 

cm−2 
97 

24 h at an 

overpotentia

l of 250 mV 

Nat. Chem. 2017, 

10, 24 

PW12/Ag/graphene[6] 

0.1 mol L−1 

PBS (pH 

7.0) 

540 mV at 10 mA 

cm−2 
190 

3 h at 1.84 

VRHE 

Eur. J. Inorg. 

Chem. 2019, 31, 

3597 

Polyoxometalate intercalated NiFe 

LDHs[7] 

O2-bubbled 

1 M KOH 

287 mV at 10 mA 

cm−2 
43 

40 h at 10 

mA cm−2 

Int. J. Hydrogen 

Energ 2020, 45, 

1802 

Cu6Co7 POM on the carbon cloth[8] 

Phosphate 

buffer (pH 

7) 

440 mV at 5 mA 

cm−2; 500 mV at 

10 mA cm−2 

147 

~5 h at a 

fixed 

overpotentia

l of 400 mV 

J. Mater. Chem. A 

2018, 6, 9915 
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