Activating inert non-defect sites in Bi catalysts using tensile strain engineering for highly active CO₂ electroreduction Xingbao Chen^{1,2,7}, Ruihu Lu^{2,7}, Chengbo Li^{3,7}, Wen Luo^{1,*}, Ruohan Yu¹, Jiexin Zhu^{1,2,*}, Lei Lv¹, Yuhang Dai¹, Shanhe Gong⁴, Yazhou Zhou⁵, Weiwei Xiong¹, Jiahao Wu¹, Hongwei Cai¹, Xinfei Wu¹, Zhaohui Deng¹, Boyu Xing¹, Lin Su⁶, Feiyue Wang¹, Feiyang Chao¹, Wei Chen¹, Chuan Xia³, Ziyun Wang^{2,*}, Liqiang Mai^{1,*} ¹State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China. ²School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand. ³School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China. ⁴School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China. ⁵Nanotechnology Centre, Centre for Energy and Environmental Technologies (CEET), VŠB—Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic. ⁶The Southeast University, Nanjing 210000, Jiangsu, P. R. China ⁷These authors contributed equally to this work. *Email: <u>luowen_1991@whut.edu.cn;</u> <u>jxzhu@whut.edu.cn;</u> <u>ziyun.wang@auckland.ac.nz;</u> <u>mlq518@whut.edu.cn</u> **Supplementary Fig. 1**| Models of Pure Bi, Bi-1SV, Bi-2SV, and Bi-3SV. The purple lines represent Bi-Bi bonds. The purple spheres highlight SV sites. **Supplementary Fig. 2**| Models of *OCHO adsorption on Bi sites of various Bi catalysts. The white, grey, red, and purple spheres represent H, C, O, and Bi atoms. Respectively. **Supplementary Fig. 3**| Free energy profile of CO₂RR towards HCOOH on various Bi sites. (a) Bi-2SV sites, (b) Bi-3SV sites. Source data are provided as a Source Data file. Supplementary Fig. 4| SEM images and EDS mappings of Bi-MOF. Supplementary Fig. 5| SEM images and EDS mappings of Bi-MOF-MF. **Supplementary Fig. 6** SEM images and EDS mappings of Bi-MOF-TS. **Supplementary Fig. 7**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and Energy Dispersive X-ray spectroscopy (EDX) mapping of the Bi-MOF. **Supplementary Fig. 8**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and Energy Dispersive X-ray spectroscopy (EDX) mapping of the Bi-MOF-MF. **Supplementary Fig. 9**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and Energy Dispersive X-ray spectroscopy (EDX) mapping of the Bi-MOF-TS. **Supplementary Fig. 10**| Bi L_3 -edge XANES spectra of Bi-MOF, Bi-MOF-MF and Bi-MOF-TS. Source data are provided as a Source Data file. **Supplementary Fig. 11**| Linear combination analysis of Bi-MOF-MF. Source data are provided as a Source Data file. **Supplementary Fig. 12**| Linear combination analysis of Bi-MOF-TS. Source data are provided as a Source Data file. **Supplementary Fig. 13** | EXAFS fitting of Bi-MOF-MF. Source data are provided as a Source Data file. **Supplementary Fig. 14** EXAFS fitting of Bi-MOF-TS. Source data are provided as a Source Data file. Supplementary Fig. 15 K-space of Bi-MOF, Bi-MOF-MF, Bi-MOF-TS, referenced Bi foil and Bi_2O_3 . Source data are provided as a Source Data file. Supplementary Fig. 16| HAADF-STEM image of Bi-MOF. Supplementary Fig. 17 \mid HAADF-STEM image of Bi-MOF-TS and the size distribution for Bi₂O₃ clusters in it. Supplementary Fig. 18| Schematic representation of alkaline gas diffusion electrode system. **Supplementary Fig. 19** NMR spectrum of the liquid product in flow-cell test. Source data are provided as a Source Data file. **Supplementary Fig. 20**| GC FID1 spectrum of the gas product in flow-cell test. Source data are provided as a Source Data file. **Supplementary Fig. 21** LSV curves of Bi-MOF, Bi-MOF-MF and Bi-MOF-TS in 1 M KOH electrolyte at the rate of 10 mV cm⁻¹. 3 Ω iR correction was applied. Source data are provided as a Source Data file. **Supplementary Fig. 22**| Partial current density of HCOO $^{-}$ under different applied currents for Bi-MOF, Bi-MOF-MF and Bi-MOF-TS in alkaline electrolyte. 3 Ω iR correction was applied. Source data are provided as a Source Data file. **Supplementary Fig. 23**| Comparison of the potential range with formate selectivity over 90% for Bi-MOF-MF, Bi-MOF-TS and recently reported Bi-based catalysts. Source data are provided as a Source Data file. Supplementary Fig. 24| LSV curves of Bi-MOF, Bi-MOF-MF and Bi-MOF-TS without CO₂. 3 Ω iR correction was applied. Source data are provided as a Source Data file. **Supplementary Fig. 25**| Partial current density of HCOOH under different applied currents for Bi-MOF, Bi-MOF-MF and Bi-MOF-TS in acidic electrolyte. IR correction was not applied. Source data are provided as a Source Data file. **Supplementary Fig. 26**| FE of HCOOH and SPCE of CO_2 for the three catalysts at various CO_2 flow rates at 500 mA cm⁻². The electrolyte was 0.1 M $K_2SO_4+0.02$ M H_2SO_4 . IR correction was not applied. Source data are provided as a Source Data file. **Supplementary Fig. 27**| The FE of HCOOH and H₂, CO a for Bi-MOF, Bi-MOF-MF and Bi-MOF-TS in 1 M KHCO₃. IR correction was not applied. Source data are provided as a Source Data file. **Supplementary Fig. 28** LSV curves of Bi-MOF, Bi-MOF-MF and Bi-MOF-TS in neutral electrolyte at the rate of 10 mV cm⁻¹. No IR correction was performed. Source data are provided as a Source Data file. **Supplementary Fig. 29**| The CV curves with different scan rate under the potential of -0.03 V - 0.05 V vs. RHE of Bi-MOF, Bi-MOF-MF, Bi-MOF-TS. The catalysts ink was mixed with then coated on glassy carbon electrode and run the CV in 1 M KHCO₃. Source data are provided as a Source Data file. Supplementary Fig. 30| Δj at 0.01 V vs. RHE as a function of the scan rate to evaluate C_{dl} . Source data are provided as a Source Data file. $\textbf{Supplementary Fig. 31} | \ \text{Optical photograph for in-situ XAFS measurements}.$ **Supplementary Fig. 32** K-space of Bi-MOF under in-situ test. Source data are provided as a Source Data file. **Supplementary Fig. 33** K-space of Bi-MOF-TS under in-situ test. Source data are provided as a Source Data file. **Supplementary Fig. 34** | XRD of three kinds of pre-catalysts after CO₂RR and the enlarged image of the diffraction peak at the 012 crystal plane. Source data are provided as a Source Data file. We calculate strain(s) through the formula: $$s = (l_f - l_i)/l_i * 100\%$$ where l_f and l_i represent the interplanar spacing calculated by XRD of the initial and final states, respectively. **Supplementary Fig. 35**| HAADF-STEM image of Bi-MOF-TS-derived Bi⁰ and the size distribution for Bi particles in it. **Supplementary Fig. 36**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and Energy Dispersive X-ray spectroscopy (EDX) mapping of the Bi-MOF after reaction. **Supplementary Fig. 37**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and Energy Dispersive X-ray spectroscopy (EDX) mapping of the Bi-MOF-MF after reaction. **Supplementary Fig. 38**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and Energy Dispersive X-ray spectroscopy (EDX) mapping of the Bi-MOF-TS after reaction. **Supplementary Fig. 39**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. (a, d) the image of Bi-MOF after reaction, (b) the partial zoom of STEM image at 1st position, (c) the atomic distance of the Bi (012) facet at 1st position, (e) the partial zoom of STEM image at 2nd position, (f) the atomic distance of the Bi (012) facet at 2nd position. **Supplementary Fig. 40**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. (a) the image of Bi-MOF-MF after reaction, (b) the partial zoom of STEM image, (c-d) the atomic distance of the Bi (012) facet, (c) the 1st position and (d) the 2nd position. **Supplementary Fig. 41**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. (a) the image of Bi-MOF-MF after reaction, (b) the partial zoom of STEM image at another position, (c) the atomic distance of the Bi (012) facet. **Supplementary Fig. 42**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. (a) the image of Bi-MOF-TS after reaction, (b) the partial zoom of STEM image at the SV position, (c-d) the atomic distance of the Bi (012) facet, (c) the 1st position is the place with tensile strain and (d) the 2nd position is the place with compressive strain. **Supplementary Fig. 43**| High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. (a) the image of Bi-MOF-TS after reaction, (b) the partial zoom of STEM image at a normal position, (c) the atomic distance of the Bi (012) facet. **Supplementary Fig. 44**| In-situ ATR-SEIRAS spectra of Bi-MOF(a) and Bi-MOF-MF(b) Bi-MOF-TS(c) at the different applied potentials (reference to RHE). Source data are provided as a Source Data file. **Supplementary Fig. 45** Tafel plots for the Bi-MOF, Bi-MOF-MF and Bi-MOF-TS. Source data are provided as a Source Data file. **Supplementary Fig. 46**| The CV cycle of Zn-CO₂ battery at a scan rate of 10 mV s⁻¹. Source data are provided as a Source Data file. **Supplementary Fig. 47**| The cell voltage and FE of HCOOH, H₂, and CO for the Bi-MOF-TS at different current densities. Source data are provided as a Source Data file. **Supplementary Fig. 48**| The total cell voltage and energy efficiency of formic acid as a function of current density. Source data are provided as a Source Data file. **Supplementary Fig. 49**| EIS tests in alkaline electrolyte. Source data are provided as a Source Data file. $\textbf{Supplementary Fig. 50} | \ \text{Optical photograph for in-situ ATR-SEIRAS measurements}.$ Supplementary Fig. 51| Optical photograph for in-situ Raman measurements. **Table S1** Strain and ΔG_{*OCHO} of Bi sites (2-5) on Bi-1SV, Bi-2SV, and Bi-3SV. | | Strain / % | | | | ΔG∗ _{OCHO} / eV | | | | |--------|------------|--------|--------|--------|--------------------------|--------|--------|--------| | | Site 2 | Site 3 | Site 4 | Site 5 | Site 2 | Site 3 | Site 4 | Site 5 | | Bi-1SV | 2.59% | 1.58% | 0.88% | 0.49% | 0.58 | 0.82 | 1.00 | 1.20 | | Bi-2SV | 3.19% | 1.40% | 0.98% | 0.60% | 0.53 | 0.92 | 0.97 | 1.13 | | Bi-3SV | 2.84% | 1.55% | 1.14% | 0.89% | 0.24 | 0.92 | 1.04 | 1.05 | Table S2. EXAFS fitting results of Bi-MOF-MF and Bi-MOF-TS. | Sample | Path | CN | R (Å) | $\sigma^2 (10^{-3} \text{ Å}^2)$ | S_0^2 | R- factor | |-------------------|------|-----------------|-----------------|----------------------------------|-------------------|-----------| | Bi-MOF-MF | Bi–O | 4.48 ± 0.53 | 2.18 ± 0.01 | 6.45 ± 1.7 | 0.224 ± 0.027 | 0.0189 | | Bi- MOF-TS | Bi–O | 3.2 ± 0.79 | 2.23 ± 0.02 | 3.09 ± 0.13 | 0.256 ± 0.04 | 0.0402 | **Table S3.** Comparison of the potential range with Bi-based electrocatalysts recently reported – a high formate selectivity and the highest partial current density of formate for the Bi-MOF-MF and Bi-MOF-TS developed in this study. | WIOF-13 | MOF-TS developed in this study. | | | | | | | | | |---------|--|------------------|--|---|--------|---|--|--|--| | Ref. | Catalysts | Electrolyte
s | Potential range
with formate
selectivity over
90% | Highest partial current
density of formate (mA
cm ⁻²) | FE (%) | Reference | | | | | | Bi-MOF-TS | 1 M KOH | 800 mV | -995 | 99% | This work | | | | | | Bi-MOF-MF | 1 M KOH | 600 mV | -642 | 98% | This work | | | | | 1 | 2D-Bi ¹ | 2 M KOH | 70 mV (-0.57
V~-0.64 V) | -215 | 86% | Nature Energy,
2019, 4, 9, 776-
785 | | | | | 2 | Defective Bi
nanotubes ² | 1 М КОН | | -206 | 98% | Nat. Commun.,
2019, 10, 2807-
2816 | | | | | 3 | Bi NSs ³ | 1 M KOH | 200 mV (-0.48
V~-0.67 V) | -360 | 89 | Advanced Energy Materials, 2020, 10, 36, 2001709 | | | | | 4 | Bismuthene nanosheets ⁴ | 1 M
KHCO3 | 750 mV (-0.65
V~-1.4 V) | -273 | 86% | Advanced Functional Materials, 2021, 31, 4, 2006704 | | | | | 5 | Bi ₂ O ₃ @C-800 ⁵ | 1 М КОН | 700 mV (-0.4
V~-1.1 V) | -208 | 92% | Angewandte
Chemie, 2020,
132, 27, 10899-
10905 | | | | | 6 | Bi RDs ⁶ | 1 M KOH | 360 mV (-0.42
V~-0.78 V) | -289 | 94% | Advanced
Materials, 2021,
33, 31, 2008373 | | | | | 7 | Bi-ene-NW ⁷ | 1 М КОН | 400 mV (-0.57
V~-0.97 V) | -515 | 92% | Energy & Environmental Science, 2021, 14, 9, 4998- 5008 | | | | | 8 | BOC@GDY ⁸ | 1 М КОН | 450 mV (-0.65
V~-1.1 V) | -200 | 93.5% | Science
Bulletin, 2021,
66, 15, 1533-
1541 | | | | | 9 | Bi nanoribbons ⁹ | 1 M KOH | 550 mV (-0.75
V~-1.3 V) | -193 | 95% | ACS Energy
Letters, 2022, 7,
4, 1454-1461 | | | | | 10 | Cu-Bi
structure ¹⁰ | 0.5 M
KHCO ₃ | 300 mV (-0.9
V~-1.1 V) | -76 | 92.5% | Angewandte
Chemie, 2023,
62, 11,
e202217569. | |----|--|----------------------------|---------------------------------------|---------|-------|---| | 11 | Bi
nanoflowers ¹¹ | 0.1 M
KHCO ₃ | 200 mV (-0.8
V~-1.0 V) | -26 | 92.3% | Advanced Functional Materials, 2023, 2301984. | | 12 | (BiO) ₂ CO ₃ ¹² | 5 M KOH | | -1353.4 | 85% | ACS Catal.,
2022, 12, 17,
10872–10886 | | 13 | BiOBr ¹³ | 1 M
KHCO ₃ | 300 mV (-0.9
V~-1.1 V) | -148 | 90% | Nature
Catalysis, 2023,
6, 9, 796-806. | | 14 | BS/VC ¹⁴ | 1М КОН | 1200 mV (-0.7
V~-1.8 V) | -910 | 94% | Nature
Commun.,
2023, 14, 1,
4670. | | 15 | BBS ¹⁵ | 1М КОН | 400 mV (-0.7
V, -0.9 V~-
1.2 V) | -250 | 95% | Angewandte
Chemie, 2023,
e202303117. | **Table S4.** Comparison of the highest HCOOH faradic efficiency for HCOOH and the highest partial current density for HCOOH with Bi-based electrocatalysts recently reported. | Ref. | catalyst | pН | Highest partial current density of formate (mA cm ⁻²) | FE (%) | Referennce | |------|--------------------------------|-----|---|--------|---| | | Bi-MOF-TS | 1.5 | 872.7 | 96.6% | This work | | | Bi-MOF-MF | 1.5 | 325.2 | 90.2% | This work | | 16 | BiOCl ¹⁶ | 2 | 20 | 91% | Journal of the
American Chemical
Society, 2024, 146, 8,
5333–5342. | | 17 | Bimetallic Cu-Bi ¹⁷ | 2 | 98 | 91% | Angewandte Chemie,
2023, 62, 11,
e202217569. | | 18 | Bi nanosheets ¹⁸ | 0.5 | 237.11 | 92.2% | ACS Catalysis, 2022, 12, 4, 2357–2364. | | 19 | D-Bi ¹⁹ | 1 | 100 | 77.1% | ChemElectroChem,
2024, 11, 7,
e202300799. | | 20 | TDPE-PPSU
Bi ²⁰ | 1.8 | 63.6 | 85.2% | Small, 2023, 19, 23,
2207650. | Table S5. Comparison of peak power densities of recently reported Zn-CO₂ batteries with formate as the reduction product. | Ref. | Catalyst | Peak power density
(mW cm ⁻²) | Reference | |------|-------------------------------------|--|--| | | Bi-MOF-TS | 21.4 mW cm ⁻² | This work | | 21 | Bi ₂ S ₃ –PPy | 2.4 mW cm ⁻² | Energy & Environmental Science, 2023,16, 3885-3898. ²¹ | | 22 | s-SnLi | 1.24 mW cm ⁻² | Angewandte Chemie,
2021, 133, 49, 25945-
25949. ²² | | 23 | Bi-PNCB | 1.43 mW cm ⁻² | Nano Energy, 2022, 92, 106780. ²³ | | 24 | BiC/HCS | $7.2 \pm 0.5 \; \text{mW cm}^{-2}$ | Applied Catalysis B:
Environment and
Energy, 2022, 307, 15,
121145. ²⁴ | ## References - 1. Xia C, *et al.* Continuous production of pure liquid fuel solutions via electrocatalytic CO₂ reduction using solidelectrolyte devices. *Nat. Energy* **4**, 776-785 (2019). - 2. Gong Q, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. *Nat. Commun.* **10**, 2807 (2019). - 3. Yang J, *et al.* Bi-Based Metal-Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction. *Adv. Energy Mater.* **10**, 2001709 (2020). - 4. Ma W, *et al.* Monoclinic Scheelite Bismuth Vanadate Derived Bismuthene Nanosheets with Rapid Kinetics for Electrochemically Reducing Carbon Dioxide to Formate. *Adv. Funct. Mater.* **31**, 2006704 (2020). - 5. Deng P, *et al.* Metal–Organic Framework-Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO₂ Electroreduction to Formate. *Angew. Chem. Int. Edit.* **59**, 10807-10813 (2020). - 6. Xie H, *et al.* Facet Engineering to Regulate Surface States of Topological Crystalline Insulator Bismuth Rhombic Dodecahedrons for Highly Energy Efficient Electrochemical CO₂ Reduction. *Adv. Mater.* **33**, 2008373 (2021). - Zhang M, et al. Engineering a conductive network of atomically thin bismuthene with rich defects enables CO₂ reduction to formate with industry-compatible current densities and stability. Energ. Environ. Sci. 14, 4998-5008 (2021). - 8. Tang S-F, Lu X-L, Zhang C, Wei Z-W, Si R, Lu T-B. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO₂ electroreduction to formate. *Sci. Bull.* **66**, 1533-1541 (2021). - 9. Li Y, *et al.* In Situ Confined Growth of Bismuth Nanoribbons with Active and Robust Edge Sites for Boosted CO₂ Electroreduction. *ACS Energy Lett.* 7, 1454-1461 (2022). - 10. Li Z, et al. Electron-Rich Bi Nanosheets Promote CO2 Formation for High-Performance and pH-Universal Electrocatalytic CO₂ Reduction. *Angew. Chem. Int. Edit.* **62**, e202217569 (2023). - 11. Yang S, *et al.* In Situ Structure Refactoring of Bismuth Nanoflowers for Highly Selective Electrochemical Reduction of CO₂ to Formate. *Adv. Funct. Mater.* **33**, (2023). - 12. Montiel IZ, Dutta A, Kiran K. CO₂ Conversion at High Current Densities: Stabilization of Bi(III)-Containing Electrocatalysts under CO₂ Gas Flow Conditions. *ACS Catal.* **12**, 10872–10886 (2022). - 13. Yang S, *et al.* Halide-guided active site exposure in bismuth electrocatalysts for selective CO₂ conversion into formic acid. *Nat. Catal.* **6**, 796-806 (2023). - 14. Zhu J, et al. Surface passivation for highly active, selective, stable, and scalable CO₂ electroreduction. Nat. - Commun. 14, 4670 (2023). - 15. Lv L, *et al.* Coordinating the Edge Defects of Bismuth with Sulfur for Enhanced CO₂ Electroreduction to Formate. *Angew. Chem. Int. Edit.* **62**, e202303117 (2023). - 16. Liu H, *et al.* Observation on Microenvironment Changes of Dynamic Catalysts in Acidic CO₂ Reduction. *J. Am. Chem. Soc.* **146**, 5333-5342 (2024). - 17. Li Z, et al. Electron-Rich Bi Nanosheets Promotes CO₂- Formation for High-Performance and pH-Universal Electrocatalytic CO₂ Reduction. *Angewandte Chemie (International ed. in English)* **62**, e202217569 (2023). - 18. Qiao Y, *et al.* Engineering the Local Microenvironment over Bi Nanosheets for Highly Selective Electrocatalytic Conversion of CO₂ to HCOOH in Strong Acid. *ACS Catal.* **12**, 2357-2364 (2022). - 19. Lhostis F, Tran N-H, Rousse G, Zanna S, Menguy N, Fontecave M. Promoting Selective CO₂ Electroreduction to Formic Acid in Acidic Medium with Low Potassium Concentrations under High CO₂ Pressure. *Chem. Electro. Chem.* 11, e202300799 (2024). - 20. Yan T, Pan H, Liu Z, Kang P. Phase-Inversion Induced 3D Electrode for Direct Acidic Electroreduction CO₂ to Formic acid. *Small* **19**, 2207650 (2023). - 21. Li C, *et al.* Bio-inspired engineering of Bi₂S₃–PPy composite for the efficient electrocatalytic reduction of carbon dioxide. *Energ. Environ. Sci.* **16**, 3885-3898 (2023). - 22. Yan S, *et al.* Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO₂. *Angew. Chem. Int. Edit.* **133**, 25945-25949 (2021). - 23. Wang Y, *et al.* Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn-CO₂ batteries. *Nano Energy*, **92**, 106780 (2022). - 24. Yang M, *et al.* Highly dispersed Bi clusters for efficient rechargeable Zn–CO₂ batteries. *Appl. Catal. B: Environ.*, **307**, 121145 (2022).