Supporting Information ## Homogeneous Adsorption of Multiple Potassiation Products of Red Phosphorus Anode towards Stable Potassium Storage Feiyue Wang^a, Tong Yang^a, Wencong Feng^a, Jingke Ren^a, Xingbao Chen^a, Chaojie Cheng^a, Wen Luo^{b,*}, Xiaobin Liao^{a,*}, Liqiang Mai^{a,*} ^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China ^b Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China ## * Corresponding authors. **Wen Luo** — Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China; orcid.org/0000-0002-1732-295X; E-mail: luowen 1991@whut.edu.cn **Xiaobin Liao**—State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China; orcid.org/0000-0002-2455-832X; E-mail: liaoxiaobin@live.com **Liqiang Mai**—State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China; orcid.org/0000-0003-4259-7725; E-mail: mlq518@whut.edu.cn Table S1. Detailed results of EIS analysis. | Materials | $R_s(\Omega)$ | $R_{ct}(\Omega)$ | |-----------|---------------|------------------| | RP/C | 77.4 | 8284 | | NiPc@RP/C | 64.7 | 7804 | | FePc@RP/C | 18.5 | 5087 | | CoPc@RP/C | 16.2 | 6087 | Figure S1. (a) XRD pattern of MWCNT-OH; (b) XRD pattern of CoPc; (c) XRD pattern of FePc; (d) XRD pattern of NiPc. **Figure S2.** (a) SEM image of CoPc@RP/C; (b) SEM image of FePc@RP/C; (c) SEM image of NiPc@RP/C; (d) SEM image of RP/C. **Figure S3.** (a) TEM image of NiPc@RP/C; (b) HRTEM image of NiPc@RP/C (inset: the SAED pattern); (c) EDS elemental mapping of NiPc@RP/C. **Figure S4.** (a) TEM image of CoPc@RP/C; (b) HRTEM image of CoPc@RP/C (inset: the SAED pattern); (c) EDS elemental mapping of CoPc@RP/C. Figure S5. (a)~(c) Cycling performance of CoPc@RP/C, NiPc@RP/C and RP/C with different electrolytes at a current density of 0.1 A g⁻¹, respectively. **Figure S6.** (a) CV curves at 0.2 mV s⁻¹ scan rate of CoPc@RP/C; (b) CV curves at 0.2 mV s⁻¹ scan rate of NiPc@RP/C; (c) CV curves at 0.2 mV s⁻¹ scan rate of RP/C. **Figure S7.** (a) Cycling performance of graphitized hydroxylated multi-walled carbon nanotubes at 0.1 A g⁻¹; (b) Charge-discharge curves of graphitized hydroxylated multi-walled carbon nanotubes at 0.1 A g⁻¹. **Figure S8.** (a)~(c) Cycling performance at 0.1 A g⁻¹, 0.2 A g⁻¹ and 0.3 A g⁻¹ current densities of MPc@RP/C and RP/C. **Figure S9.** (a)~(d) Modeling the adsorption of K_2P_3 , K_3P , KP, and K_4P_3 on NiPc, respectively. **Figure S10.** (a)~(d) Modeling the adsorption of K_2P_3 , K_3P , KP,and K_4P_3 on CoPc, respectively. **Figure S11.** (a) electrochemical impedance profile fitted using the Randles equivalent circuit model (inset); (b) linear fit of Z'to $\omega^{-1/2}$ ($\omega = 2\pi f$) in the low-frequency region. **Figure S12.** (a)~(d) P 2p spectras of XPS depth profile analysis for RP/C, NiPc@RP/C, FePc@RP/C and CoPc@RP/C after 10 cycles, respectively. **Figure S13.** (a) CV curves of PTCDA potassium half cell at a scan rate of 0.1 mV s⁻¹; (b) Charge-discharge curves of PTCDA potassium half cell at 0.1 A g⁻¹; (c) Cycling performance of PTCDA potassium half cell at 0.1 A g⁻¹. **Figure S14.** (a) Cycling performance of PTCDA//NiPc@RP/C full cell at 0.1 A g⁻¹; (b) Rate performance of PTCDA//NiPc@RP/C full cell at different current densities. **Figure S15.** (a) Cycling performance of PTCDA//CoPc@RP/C full cell at 0.1 A g⁻¹; (b) Rate performance of PTCDA//CoPc@RP/C full cell at different current densities.