Supporting Information

Homogeneous Adsorption of Multiple Potassiation Products of Red Phosphorus Anode towards Stable Potassium Storage

Feiyue Wang^a, Tong Yang^a, Wencong Feng^a, Jingke Ren^a, Xingbao Chen^a, Chaojie Cheng^a, Wen Luo^{b,*}, Xiaobin Liao^{a,*}, Liqiang Mai^{a,*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China

^b Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China

* Corresponding authors.

Wen Luo — Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China; orcid.org/0000-0002-1732-295X; E-mail: luowen 1991@whut.edu.cn

Xiaobin Liao—State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China; orcid.org/0000-0002-2455-832X; E-mail: liaoxiaobin@live.com

Liqiang Mai—State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China; orcid.org/0000-0003-4259-7725; E-mail: mlq518@whut.edu.cn

Table S1. Detailed results of EIS analysis.

Materials	$R_s(\Omega)$	$R_{ct}(\Omega)$
RP/C	77.4	8284
NiPc@RP/C	64.7	7804
FePc@RP/C	18.5	5087
CoPc@RP/C	16.2	6087

Figure S1. (a) XRD pattern of MWCNT-OH; (b) XRD pattern of CoPc; (c) XRD

pattern of FePc; (d) XRD pattern of NiPc.

Figure S2. (a) SEM image of CoPc@RP/C; (b) SEM image of FePc@RP/C; (c) SEM image of NiPc@RP/C; (d) SEM image of RP/C.

Figure S3. (a) TEM image of NiPc@RP/C; (b) HRTEM image of NiPc@RP/C (inset: the SAED pattern); (c) EDS elemental mapping of NiPc@RP/C.

Figure S4. (a) TEM image of CoPc@RP/C; (b) HRTEM image of CoPc@RP/C (inset: the SAED pattern); (c) EDS elemental mapping of CoPc@RP/C.

Figure S5. (a)~(c) Cycling performance of CoPc@RP/C, NiPc@RP/C and RP/C with

different electrolytes at a current density of 0.1 A g⁻¹, respectively.

Figure S6. (a) CV curves at 0.2 mV s⁻¹ scan rate of CoPc@RP/C; (b) CV curves at 0.2 mV s⁻¹ scan rate of NiPc@RP/C; (c) CV curves at 0.2 mV s⁻¹ scan rate of RP/C.

Figure S7. (a) Cycling performance of graphitized hydroxylated multi-walled carbon nanotubes at 0.1 A g⁻¹; (b) Charge-discharge curves of graphitized hydroxylated multi-walled carbon nanotubes at 0.1 A g⁻¹.

Figure S8. (a)~(c) Cycling performance at 0.1 A g⁻¹, 0.2 A g⁻¹ and 0.3 A g⁻¹ current densities of MPc@RP/C and RP/C.

Figure S9. (a)~(d) Modeling the adsorption of K_2P_3 , K_3P , KP, and K_4P_3 on NiPc, respectively.

Figure S10. (a)~(d) Modeling the adsorption of K_2P_3 , K_3P , KP,and K_4P_3 on CoPc, respectively.

Figure S11. (a) electrochemical impedance profile fitted using the Randles equivalent circuit model (inset); (b) linear fit of Z'to $\omega^{-1/2}$ ($\omega = 2\pi f$) in the low-frequency region.

Figure S12. (a)~(d) P 2p spectras of XPS depth profile analysis for RP/C, NiPc@RP/C, FePc@RP/C and CoPc@RP/C after 10 cycles, respectively.

Figure S13. (a) CV curves of PTCDA potassium half cell at a scan rate of 0.1 mV s⁻¹; (b) Charge-discharge curves of PTCDA potassium half cell at 0.1 A g⁻¹; (c) Cycling performance of PTCDA potassium half cell at 0.1 A g⁻¹.

Figure S14. (a) Cycling performance of PTCDA//NiPc@RP/C full cell at 0.1 A g⁻¹; (b) Rate performance of PTCDA//NiPc@RP/C full cell at different current densities.

Figure S15. (a) Cycling performance of PTCDA//CoPc@RP/C full cell at 0.1 A g⁻¹; (b) Rate performance of PTCDA//CoPc@RP/C full cell at different current densities.