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a b s t r a c t 

The application of silicon in lithium-ion batteries has been impaired by the low conductivity and large 

volume expansion. Herein, we develop a facile “surface amination” strategy to successfully encapsulate Si 

nanoparticles within the ZIF-8-derived N-doped carbon matrix. The amino group-containing organosilica 

serves as the linking agent between Si nanoparticles and Zn2 + and facilitates the coating of the ZIF-8 

layer on the Si nanoparticles. This in turn induces the construction of N-doped carbon matrix encapsu- 

lated Si nanoparticles (NH2 -Si@C) during the subsequent carbonization. With buffered volume change and 

increased conductivity, the rationally designed NH2 -Si@C demonstrates a high reversible capacity (1494 

mAh g–1 at 1 A g–1 ) and satisfactory rate performance (1062 mAh g–1 at 5 A g–1 ). 

© 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & 

Technology. 
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. Introduction 

Nowadays, lithium-ion batteries (LIBs) play an important role in 

ortable electronic devices, electric vehicles, and grid-scale energy 

torage as the power sources [ 1–3 ]. Traditional LIB anode materials 

ased on graphite and Li4 Ti5 O12 gradually fail to meet the devel- 

ping demand due to their low theoretical capacity [ 4–7 ]. Conse- 

uently, there is a pressing need to develop high-capacity anode 

aterials to meet the growing demands of LIBs. 

Silicon has been considered one of the most promising anode 

aterials for LIB in recent years [ 8–11 ]. It possesses a high theoret-

cal capacity (4200 mAh g–1 for Li22 Si4 ), which is much higher than 

hat of graphite. Moreover, the suitable lithiation potential (0.4 V 

ersus Li/Li+ ) and natural abundance of silicon are also the reasons 

or the high interest from industrial and academic fields [ 12 , 13 ].

owever, the alloying reaction of silicon with lithium causes a 

arge volume change. In addition, the low intrinsic conductivity 

f silicon limits its lithiation/de-lithiation kinetics [ 14–17 ]. To ad- 

ress these issues, compositing silicon with carbon has been iden- 

ified as an effective solution. By incorporating carbon materials, 

he electrical conductivity can be increased, and the volume ex- 

ansion of silicon can be buffered [ 18–20 ]. 
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Zeolitic imidazolate framework-8 (ZIF-8), a typical metal- 

rganic framework (MOF), is structurally controllable and can be 

asily synthesized, making it an ideal carbon source [ 21 ]. After 

igh-temperature calcination, the ZIF-8 can be converted into an 

-doped carbon matrix, which is able to improve the electrical 

onductivity and limit the volume expansion of silicon. Song et al. 

 22 ] designed a ZIF-derived carbon-coated silicon composite an- 

de material. Yang’s group [ 23 ] employed MOF-derived carbon as 

he nanoreactor and deposited ultrasmall silicon nanodots within 

he reactor by chemical vapor deposition (CVD). Zhao’s group [ 24 ] 

ncapsulated Si nanoparticles in ZIF through a wet-chemistry ap- 

roach and converted the ZIF/Si composite into Si/C. However, for 

ost reported silicon-carbon composites, the bonding between sil- 

con and carbon is usually relatively weak, which may lead to 

he detachment of silicon from the carbon matrix during cycling 

 25 , 26 ]. Therefore, it is essential to design a cost-effective and 

acile method to construct a silicon-carbon structure with high in- 

erface stability. 

In this study, we develop a surface modification strategy for sil- 

con nanoparticles by introducing amine groups onto the surface 

Si-NH2 ). Due to the coordination between zinc ions and the amino 

roups, the Si nanoparticles are successfully encapsulated within 

IF-8 by the self-assembly of zinc ions and 2-methylimidazole 

2-MIM). After pyrolysis, the Si nanoparticles are successfully en- 

apsulated in the N-doped carbon matrix derived from the ZIF-8 

oating (NH2 -Si@C). The as-prepared NH2 -Si@C delivers a high re- 

ersible capacity, stable cycling, and good rate performance. 
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. Results and discussion 

Fig. 1 illustrates the synthesis process of NH2 -Si@C. The sur- 

ace amination of Si nanoparticles (denoted as Si NPs) is achieved 

y dispersing Si NPs (Fig. S1 in Supplementary materials) and 

3-aminopropyl)trimethoxysilane (APTMS) in deionized water. The 

mino groups on the surface of Si NPs can react with Zn2 + through 

 coordination reaction. Meanwhile, the Zn2 + assembles with 2- 

IM, which leads to the uniform growth of ZIF-8 on the surface of 

i NPs. After pyrolysis, the NH2 -Si@C can be obtained. For compar- 

son, a silicon-carbon composite without surface treatment is also 

repared (denoted as Si@C). 

Fig. 2 (a) presents the X-ray diffraction (XRD) patterns of NH2 -Si 

nd pure Si. The characteristic peaks at 28.4 °, 47.3 °, 56.1 °, 69.1 °,
6.3 °, and 88 ° can be assigned to the (111), (220), (311), (400), 

331), and (422) planes of Si (JCPDS 27–1402) [ 23 ]. There is no

ignificant change in the XRD patterns before and after the am- 

nation. The Fourier transform infrared (FTIR) spectra of NH2 -Si 

nd Si are shown in Fig. 2 (b). Compared to pure Si, the NH2 -

i presents an N–H stretching band at ∼ 3500 cm–1 , which is 

rom the primary amine group of APTMS [ 27 ]. The N 1s X-ray

hotoelectron spectroscopy (XPS) spectrum of NH2 -Si ( Fig. 2 (c)) 

isplays an N–H peak (399.2 eV) and a N–C peak (401.3 eV). 

he Si 2p XPS spectra (Fig. S2) of NH2 -Si show a characteristic 

eak at 102.5 eV, corresponding to the Si–O–C bond from APTMS. 

he Si-O-C bond can also be observed in the O 1s XPS spec- 

rum (Fig. S2). The XPS results confirm the coating of APTMS- 

erived organosilica on the surface of Si. The bare Si NPs are 

enerally spherical in shape and highly aggregated ( Fig. 2 (d) and 

1). After amination, the morphology and size of Si NPs re- 

ain ( Fig. 2 (e)). High-angle annular dark-field scanning transmis- 

ion electron microscopy (HAADF-STEM) image clearly shows the 

ore@shell structure of NH2 -Si NPs. The corresponding energy dis- 

ersive spectrometry (EDS) elemental mappings ( Fig. 2 (f)) further 

onfirm the core@shell structure and the N mainly distributes 

n the surface of Si NPs. The formation of the N-rich shell is 

aused by the hydrolysis and condensation of APTMS on the sur- 

ace of Si NPs, which forms an organosilica coating. Compared to 

are Si NPs (Fig. S1), the NH2 -Si NPs ( Fig. 2 (f)) show a better

ispersion. 
Fig. 1. Schematic illustration for the s

94
The NH2 -Si@ZIF exhibits a well-defined polyhedron shape with 

 particle size of ∼500 nm ( Fig. 3 (a)). The polyhedron shape of 

H2 -Si@ZIF is probably inherited from the usually observed rhom- 

ohedral shape of ZIF-8. The polyhedron shape can be generally 

aintained after carbonization ( Fig. 3 (b)). Transmission electron 

icroscopy (TEM, Fig. 3 (c)) confirms the successful encapsulation 

f NH2 -Si NPs in the carbon matrix. The (111) lattice fringes of 

rystalline Si can be clearly observed in the high-resolution TEM 

HRTEM, Fig. 3 (d)). HAADF-STEM and the corresponding EDS map- 

ings ( Fig. 3 (e)) further confirm the successful encapsulation of 

H2 -Si NPs in the N-doped carbon matrix. Without surface ami- 

ation, bare Si NPs can also be encapsulated in ZIF-8 (Fig. S3(a)). 

owever, the Si@ZIF core@shell structure collapses after pyrolysis, 

nd a substantial fraction of Si NPs is exposed due to the weak in- 

eraction between the Si NPs and ZIF-8 (Figs. S3(b) and S4). That is 

o say, the coordination between –NH2 and Zn2 + plays an impor- 

ant role in maintaining structural stability during carbonization. 

Fig. 4 (a) presents the XRD patterns of NH2 -Si@ZIF, Si@ZIF, 

nd ZIF-8. All three samples present sharp diffraction peaks be- 

ween 5 °–40 °, which belong to ZIF-8 [ 28 ]. The two samples af-

er carbonization (NH2 -Si@C and Si@C) show characteristic peaks 

t 2 θ = 28.4 °, 47.3 °, and 56.1 °, which are from crystalline Si

 Fig. 4 (b)). The absence of any diffractions for graphitic carbon or 

raphite indicates the amorphous nature of carbon. The Raman 

pectra of NH2 -Si@C and Si@C display a broad D band (1338 cm–1 ) 

nd G band (1587 cm–1 ) with comparable intensities, confirming 

he amorphous nature of ZIF-8-derived carbon [ 29 ]. The Raman 

pectra of NH2 -Si@C, Si@C, and pure Si ( Fig. 4 (c)) display sharp 

ands at 521 cm–1 , corresponding to the Si–Si stretching [ 30 ]. 

hermogravimetric analysis (TGA) is conducted to determine the 

arbon contents of the samples (Fig. S5). The carbon contents of 

H2 -Si@C and Si@C are ∼35 and ∼38 wt.%, respectively. N2 sorp- 

ion is conducted to analyse the specific surface areas and porous 

tructure of NH2 -Si@C and Si@C (Fig. S6). Both NH2 -Si@C and Si@C 

how type I isotherm, which is typical for microporous materi- 

ls. The increase in adsorption amount at high P / P0 is related to 

he adsorption of N2 at the interparticle voids. Hysteresis loops 

an also be observed at relatively high P / P0 values. The Brunauer- 

mmett-Teller (BET) surface areas of NH2 -Si@C and Si@C are calcu- 

ated to be 399 and 410 m ² g–1 . 
ynthesis of NH2 -Si@C and Si@C. 
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Fig. 2. (a) XRD patterns of NH2 -Si and pure Si, (b) FTIR spectra of NH2 -Si and Si; (c) N 1s XPS spectrum of NH2 -Si; (d) SEM image of Si NPs; (e) SEM image of NH2 -Si; (f) 

HAADF-STEM image and the corresponding EDS mappings of NH2 -Si. 

Fig. 3. (a) SEM image of NH2 -Si@ZIF, (b) SEM, (c) TEM, (d) HRTEM, and (e) HAADF-STEM image and the corresponding EDS mappings of NH2 -Si@C. 
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Fig. 4. (a) XRD patterns of NH2 -Si@ZIF, Si@ZIF, and ZIF-8; (b) XRD patterns of NH2 -Si@C and Si@C; (c) Raman spectra of NH2 -Si@C, Si@C, and Si; (d) Si 2p XPS spectrum of 

NH2 -Si@C. 
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The XPS survey spectrum of NH2 -Si@C (Fig. S7(a)) shows peaks 

or C, N, O, and Si elements. The Si 2p spectrum ( Fig. 4 (d)) of

H2 -Si@C shows three distinct components at 99.4, 101.9, and 

02.9 eV, which are from the Si–Si, Si–O–C, and SiOx species, 

espectively [ 31 ]. The N 1s spectrum (Fig. S7(b)) presents three 

istinct nitrogen species, corresponding to N–H, N–C, and N = C 

pecies with characteristic binding energies of 398.7, 400.9, and 

03.5 eV, respectively. The C 1s spectrum (Fig. S7(c)) exhibits three 

arbon species, attributed to C–C (284.8 eV), C–N/C–O (286.3 eV), 

nd C = O (288.8 eV). Moreover, the O 1s spectrum (Fig. S7(d)) 

howcases three oxygen species, identified as C = O, Si–O–C, and 

i–O–Si with binding energies of 530.6, 531.9, and 533.2 eV, 

espectively. 

The cyclic voltammetry (CV, Fig. 5 (a)) curves of NH2 -Si@C ex- 

ibit a reduction peak at 0.4 V in the first discharge process, aris- 

ng from the decomposition of fluoroethylene carbonate (FEC) and 

he generation of a solid electrolyte interphase (SEI) film. The dis- 

ppearance of this peak in the subsequent cycles indicates the 

deal stability of the SEI film [ 32 , 33 ]. In addition, a cathodic peak

t 0.01 V corresponding to the alloying reaction of Si can also be 

bserved. The oxidation peaks at 0.33 and 0.51 V in the first an- 

dic process resulted from the de-alloying reaction from Lix Si to 

morphous Si [ 34 ]. As the crystalline Si is transformed into amor- 

hous Si during the first cycle, a reduction peak from the alloying 

rocess of amorphous Si is observed at 0.19 V in the subsequent 
96
ycles. Fig. S8(a) provides the CV profiles of Si@C for comparison. 

he Si@C shows CV profiles quite similar to those of NH2 -Si@C. 

Representative galvanostatic charge/discharge (GCD) profiles of 

H2 -Si@C are displayed in Fig. 5 (b). At 0.2 A g–1 , the NH2 -Si@C 

anifests a high initial discharge capacity of 2408 mAh g–1 and 

n initial Coulombic efficiency of 75.8 %. At the same current den- 

ity, the Si@C exhibits a slightly lower capacity (2261 mAh g–1 ) 

s well as ICE (75.2 %) (Fig. S8(b)). Fig. 5 (c) compares the cycling 

erformances of NH2 -Si@C and Si@C at 0.2 A g–1 . The NH2 -Si@C 

emonstrates not only a higher capacity but also better cyclability 

han the Si@C. From the 2nd cycle to the 100th cycle, the capacity 

ading for NH2 -Si@C and Si@C are 24.6 % and 41.1 %, respectively. 

he better cyclability of NH2 -Si@C can be attributed to its full en- 

apsulation structure, which effectively restricts the volume expan- 

ion of Si NPs. Over 300 cycles at 1 A g–1 , the NH2 -Si@C retains

6.3 % of the reversible capacity, while the Si@C retains only 40.4 % 

 Fig. 5 (d)). For the rate performance ( Fig. 5 (e)), the NH2 -Si@C deliv-

rs capacities of 1768, 1702, 1573, 1459, 1369, and 1062 mAh g–1 at 

.1, 0.2, 0.5, 1, 2, and 5 A g–1 , respectively. The capacity recovers to 

676 mAh g–1 with the switching back of current density to 0.2 A 

–1 . Although the capacity of Si@C is just slightly lower than that 

f NH2 -Si@C at low current densities, the capacity difference ex- 

cerbates with increasing current density. In short, the NH2 -Si@C 

utperforms the Si@C in capacity, cyclability, and rate capability. 

n addition, compared to other Si/ZIF-derived anode materials, the 
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Fig. 5. (a) CV profiles and (b) representative GCD profiles of NH2 -Si@C. Cycling performances of NH2 -Si@C and Si@C at (c) 200 mA g–1 and at (d) 1 A g–1 . (e) Rate perfor- 

mances of NH2 -Si@C and Si@C. For (d), the samples are activated at 200 mA g–1 for 5 cycles and then cycled at 1 A g–1 . 

Fig. 6. In-situ XRD patterns of the NH2 -Si@C collected during GCD at 300 mA g−1 . 
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H2 -Si@C also demonstrates comparable, if not superior, electro- 

hemical performances (Table S1). 

To find out the optimized Si to ZIF ratio, the ZIF feeding amount 

2-MIM and zinc nitrate) is tuned from 0.005 to 0.02 mol, while 

he NH2 -Si feeding amount is fixed at 200 mg. The optimal elec- 

rochemical performance of NH2 -Si@C is achieved with a ZIF con- 

ent of 0.01 mol, striking a balance between capacity and stability 

Fig. S9). 

Electrochemical impedance spectra (EIS, Fig. S10) demonstrate 

hat the NH2 -Si@C has a lower charge transfer resistance ( Rct ) than 

he Si@C [ 35 ]. The structural stability of the electrodes is inves- 

igated through ex-situ SEM (Figs. S11 and S12). Severe cracking 

f the Si@C-based electrode can be observed after 50 cycles (Fig. 
97
11(d)). Meanwhile, the electrode thickness increases dramatically 

rom 14.3 to 19.9 μm with a thickness expansion of 39.2 % (Fig. 

12(d)). In contrast, the NH2 -Si@C-based electrode exhibits excel- 

ent structural integrity (Fig. S11(b)). The thickness of the elec- 

rode increases slightly from 8.1 to 9.4 μm after 50 cycles, show- 

ng an alleviated thickness expansion of 14.3 % (Fig. S12(b)). Ex- 

itu TEM reveals that the NH2 -Si@C (Fig. S13) retains its well- 

efined core@shell structure after 100 cycles at 1 A g–1 . In contrast, 

he Si@C undergoes severe structural degradation, as evidenced by 

he pulverization of the material into a fractured morphology (Fig. 

14). 

The Li+ diffusivity in the NH2 -Si@C and Si@C is investigated by 

alvanostatic intermittent titration technique (GITT, Fig. S15). Based 
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n the Fick’s second law, the diffusion coefficient of Li+ ( DLi+ ) is 

alculated according to the following simplified equation: 

Li + =
4 L2 

πτ

(
�ES 

�Eτ

)2 

(1) 

here L refers to the Li+ diffusion length (equal to the electrode 

hickness), �Eτ represents the voltage change, and �ES is the volt- 

ge change induced by the pulse [ 36 ]. Fig. S14(b) displays the DLi+ 
alues of NH2 -Si@C and Si@C at different times. The NH2 -Si@C 

hows a slightly higher DLi+ value than the Si@C. Throughout the 

ealloying process, the DLi+ of the NH2 -Si@C electrode is relatively 

onstant with a value as high as ∼10–11 cm2 s–1 , higher than that 

f the Si@C electrode (10–12 cm2 s–1 ). 

In-situ XRD is performed to elucidate the structural evolution of 

H2 -Si@C during the GCD process ( Fig. 6 ). The electrode at open 

ircuit voltage (OCV) exhibits distinct characteristic peaks from Si 

28.4 °, 47.3 °, and 56.1 °). During the initial discharge, the intensity 

f the diffraction peaks from Si decreases continuously, which is 

aused by the alloying reaction of Si [ 37 ]. Upon completion of the

nitial discharge process, the crystalline Si undergoes a phase trans- 

ormation, converting into amorphous Lix Si, as evidenced by the 

isappearance of characteristic diffraction peaks in the XRD pat- 

erns (Fig. S16). Notably, the amorphous nature of Lix Si persists 

hroughout the subsequent charge-discharge cycles [ 38 ]. 

. Conclusions 

In summary, Si nanoparticles encapsulated in a ZIF-8-derived 

-doped carbon matrix (NH2 -Si@C) have been successfully con- 

tructed by a facile surface amination approach. The obtained ma- 

erial manifests high reversible capacity (1494 mAh g–1 , at 1 A g–1 ), 

ecent rate performance (1062 mAh g–1 , at 5 A g–1 ), and good cy- 

ling performance (991 mAh g–1 after 300 cycles at 1 A g–1 ). This 

ork develops a strategy to encapsulate Si nanoparticles in carbon, 

hich could alleviate the inherent volume expansion and low con- 

uctivity issues of Si. 
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