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a b s t r a c t

Aqueous zinc batteries are promising alternatives to lead-acid batteries for large-scale energy storage. In
this work, we developed a TiO2-grafted polyethylene (TiO2-PE) separator for aqueous zinc batteries with
excellent hydrophilicity. The TiO2-PE separator demonstrates the thinnest thickness of 9 mm, significantly
decreasing the inactive mass of the entire battery comparing with the commercial glass fiber separator.
We further prove that the separator pore size can modulate the Zn deposition morphology. The (002)-
orientated Zn deposition is induced when the pore size is smaller than the crystal critical length.
Therefore, the 0.2 mm pores in TiO2-PE induce a (002)-orientated Zn deposition, while the 2 mm pores in
glass fiber lead to a randomly oriented growth of Zn metal. This work highlights the opportunities in the
pore size-modulated deposition/stripping process in Zn and other metal batteries.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

Aqueous zinc batteries (AZBs) are promising candidates for
large-scale energy storage because of their facile fabrication pro-
cess, environmental friendliness, and intrinsic safety. Additionally,
the Zn metal anode offers high theoretical specific capacity
(820 mAh/g), low potential (�0.762 V vs. standard hydrogen elec-
trode), high abundance, and widespread geological distribution
[1e3]. However, the practical application of AZBs is hindered by
several challenges. The Zn dendrite grows during plating, for
example, due to the inhomogeneous deposition of zinc ions and
eventually causes an internal short circuit [4,5].

Recently, various approaches have been developed to address
the issues mentioned above, including modifying the Zn anode
[6e8], and investigating new electrolytes [9e12]. Despite the
separator being an essential component in AZBs, it has received
insufficient attention. In most of the literature, glass fiber
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membranes with a thickness of several hundred micrometers are
applied as separators [13,14]. According to Fig. 1 and Table S1
[1,15e20], if the thickness of glass fiber is larger than 400 mm, the
energy density of AZBs will be even lower than that of standard
lead-acid batteries (30 Wh/kg) [21,22]. Therefore, using glass fiber
separators will significantly reduce the overall energy density of
AZBs. On the other hand, the glass fiber separator possesses the
largest pore sizes 2.7 mm (https://www.whatman.co.kr/pds/03.pdf),
which is easy to trigger dendrite formation. The large pores provide
sufficient space for dendritic Zn to pass through, causing the
degradation of AZBs [13,23].

According to the literature, the crystal critical length of Zn is
~1 mm at 1 mA/cm2 [24,25]. The relatively large pore size of the
glass fiber separator allows the deposited Zn crystal to grow into
the separator pores. It would be interesting to decrease the pore
size to below the Zn crystal critical length, at which the Zn crystals
may prefer to grow on the separator surface instead of in the
separator pores. Inspired by the investigation of separators in
lithium-ion batteries [26e29], a thin polyethylene (PE) membrane
is chosen as the substrate of the new AZB separator. Typically, an
AZB with a 9-mm PE separator can realize a specific energy of
108 Wh/kg (Fig. 1). More importantly, the small pore size and
uniform pore size distribution of the PE separator are beneficial to
homogenizing the nucleation and growth of Zn metal [30]. In
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Fig. 1. (A) The relationship between separator thickness and energy density of zinc-ion batteries. The energy density is calculated based on the total mass of the cathode, anode, and
separator. These separators include commercialized glass fiber, polyethylene, and polypropylene separators [1,15e20]. (B, C) The illustrated configuration of the Zn ion battery with
(B) the GF/D glass fiber separator and (C) the thinner polyethylene separators.

K. Yu, Y. Wen, M. Yan et al. Materials Today Energy 40 (2024) 101488
addition, utilizing commercial PE separators to construct a durable
Zn anode is a facile and low-cost approach highly desirable by the
AZBs industry. Herein, we report a simple and scalable approach to
prepare a hydrophilic PE separator that is suitable for AZBs
(Supporting Information).

2. Results and discussion

The TiO2-grafted PE (TiO2-PE) shows obvious hydrophilicity,
with awater contact angle of 65.5� (Fig. S1B), much lower than that
of pristine PE (123.6�, Fig. S1A). Furthermore, the TiO2-PE separator
is immersed in deionized water at room temperature tomeasure its
compatibility with aqueous electrolytes. The TiO2-PE separator
becomes transparent and sinks to the bottom of the dish. In
contrast, although the plasma-treated PE shows improved water
affinity, water cannot penetrate into the inner layer of the PE ma-
trix; it still exhibits the original white color and flows on the water
(Fig. S2). Fig. S3A and S3B represent the scanning electron micro-
scopy (SEM) images of the pristine PE and the TiO2-PE separators.
The TiO2-PE shows similar surface morphology to the pristine PE,
with a highly porous and uniformly interconnected pore structure.
This uniform interconnected pore benefits uniform ion trans-
portation and hence flat metal deposition. The pore structure of
TiO2-PE is slightly expanded during plasma etching processing,
while this effect can be controlled by adjusting the plasma treat-
ment time and power level [31]. Although we have not observed
the TiO2 particles on the TiO2-PE separator surface, the Ti 2p3/2 and
2p1/2 XPS peaks were found at 458.9 eV and 464.6 eV, indicating Ti
was in the þ4 valence state (Fig. S4) [32,33]. The further thermal
stability test of the TiO2-PE separator confirms the existence of the
tiny TiO2 particles (Fig. S5). These tiny particles grafting has a
negligible influence on the weight and thickness of the separator,
which is suitable for constructing high-energy density AZBs.

The hydrophilicity of the separator is paramount in aqueous zinc
ion batteries as it ensures effective electrolyte wetting, facilitates
ion transport, reduces internal resistance, and thereby enhances the
battery's overall performance. Fig. 2A displays the electrochemical
performance of the Zn||Zn symmetric coin cells with 1 M ZnSO4

aqueous electrolyte-filled TiO2-PE, Celgard 3501, or GF/A (glass fi-
ber) separator. The Celgard 3501 is a 25 mm surfactant-coated PP
separator and is applicable in aqueous electrolyte battery systems.
However, the battery with the Celgard 3501 separator shows a
polarization of 109 mV, much larger than that with the TiO2-PE
separator (40 mV), indicating that the Celgard 3501 suffers from a
low ionic conductivity caused by its inadequate hydrophilicity. The
2

insufficient hydrophilicity of the Celgard 3501might lead to uneven
ion diffusion and evolve into dendrite growth; hence, the battery
fails only after 15 h of cycling. The cells with TiO2-PE and GF/A
separators exhibit similar polarization at the initial cycles. However,
the one with a GF/A separator displays increased polarization, and
eventually, an internal short circuit occurs. This result demonstrates
that the excellent hydrophilic and uniform pore distribution of the
TiO2-PE can ensure the outstanding electrochemical performance
of AZBs.

The final morphology of electrodeposited metal critically relies
on the initial nucleation behavior. Cyclic voltammetry tests were
conducted to explore nucleation behavior, in which Cu foil was
used as the cathode, a Zn foil as the anode, and TiO2-PE or GF/A as
the separator. As shown in Fig. 2B, the potential located at the A
point is called the crossover potential (Eco). The potential difference
between the crossover point (A) and the point (B/B0) where Zn2þ

start to be reduced on substrates is regarded as the nucleation
overpotential (NOP). The NOP is known as a convenient parameter
to explain the extent of polarization [34,35]. Here's a formula to
describe the relationship between NOP(h) and the critical Zn nu-
cleus radius (rcrit) [36,37]:

rcrit ¼2
gVm

Fjhj (1)

g, Vm, and F represent the surface energy at the Zn electrode/
electrolyte interface, the molar volume of Zn, and Faraday's con-
stant, respectively. The equation suggests that the higher NOP in-
duces a more fine-grained zinc deposition with favorable
crystallographic orientation [38,39]. This increased overpotential
provides a sufficient driving force for the nucleation and growth
processes with finer nuclei [37,40]. Obviously, the NOP of batteries
using the TiO2-PE separator is greater than that of the GF/A sepa-
rator, which indicates that the former is more conducive to stabi-
lizing the Zn deposition.

To investigate the deposited zinc growth mechanism, we con-
ducted the chronoamperometry test on Zn||Zn symmetric coin cells
(Fig. 2C). We could effectively observe nucleation behaviors and
surface states by measuring the current variation over time at a
constant potential [41e43]. For AZBs with GF/A separator, the
current density continued to increase when an overpotential
of �150 mV was applied, indicating a long and uncontrolled 3D
growth process and rough deposition propagation [44]. The
absorbed ions moved laterally along the surface to locate the most
favorable energy sites for charge transfer. To minimize surface



Fig. 2. (A) The charge and discharge curves of the Zn||Zn symmetrical batteries with different separators at 1 mA/cm2 and 1 mAh/cm2. (B) Cyclic voltammetry curves for Zn
nucleation on the Cu foil with different separators at a scan rate of 0.01 V/s. (C) Chronoamperometry tests with the TiO2-PE and GF/A separators at an overpotential of �150 mV. (D)
Cycling performance for the Zn||VO2 full cells with TiO2-PE or GF/A separator at 0.25 A/g. (E) A diagram of the relationship between the cycle number and separators' thickness,
reflecting the cycling capability of separators per unit thickness (data from Table S2).
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energy and reduce exposed area, Zn2þ tended to aggregate and
grow into dendrites. In the TiO2-PE separator system, the Zn
nucleation and 3D growth processes initially occur for a specific
duration. Afterward, a stable and constant 2D growth process
continues, suggesting that the Zn2þ absorbed on the surface and
locally reduced to form zinc metal due to restricted 3D growth [45].
Our findings indicate that the Zn2þ tend to deposit very close to the
initial absorption site instead of low surface energy tips. These ef-
fects lead to an increase in nucleation sites, ultimately promoting
the formation of a uniform zinc layer [46,47].

Furthermore, the Zn||VO2 full cells were assembled to explore
the practical application of the separators. As shown in Fig. 2D, the
Zn||VO2 full cell employing a TiO2-PE separator exhibits remarkable
capacity retention of 98 % after 256 cycles at 0.25 A/g, out-
performing the Zn||VO2 cell using a GF/A separator, which failed
after only 85 cycles. At the same time, TiO2-PE separators can still
work at larger current density (Fig. S6). In Fig. 2E and Fig. S7, we
show the relationship between cycle per thickness and separator
3

thickness of zinc-ion batteries from the literature, highlighting the
advantages of TiO2-PE separators.

The deposition/stripping behavior of zinc metal on this novel
separator is studied with in-situ X-ray diffraction (XRD). The in-situ
cell was discharged at a current density of 1 mA/cm2 for 1 h and
subsequently charged to an upper cutoff potential of 0.5 V. Fig. 3A
and C displays the 'contour-color fill' by combining ~100 XRD
patterns. The y-axis represents test time, consistent with the
charge/discharge curve, allowing for chasing the crystal structure
changes concerning the battery voltage. Fig. 3B and D shows the
XRD spectra. In the initial state (Curve A), only the peaks of Be are
visible. As the discharge progresses, the intensity of the Zn peaks at
36.1�, 38.8�, 43.1�, and 54.2�, which corresponds to the (002), (100),
(101), and (102) crystal planes of Zn [48], respectively, increases
significantly and reaches a maximum at the end of the discharge
process (Curve B and C). During the charging process, the intensity
of the Zn peaks gradually decreases and almost disappears when
charged to 0.5 V (Curve D and E), demonstrating a highly reversible



Fig. 3. (AeD) In-situ XRD patterns of the deposited Zn with the (A and B) TiO2-PE and (C and D) GF/A separator, the symbol : represents the peak of Be while the symbol *
represents the peak of Zn; (E and F) The variation of (002) peak intensity and i002/i100 ratio of the deposited Zn in the initial 11 cycles with the (E) TiO2-PE and (F) GF/A separators.
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Zn plating/stripping performance. The XRD pattern for the battery
with a GF/A separator indicates similar variation trends during
charging compared to the battery with a TiO2-PE separator,
although the peak intensities differ.

Fig. 3E and F shows the in-situ XRD pattern of the (002) peak and
the i002/i100 ratio for the initial 11 cycles with various separators.
Recent researches reveal that the (002) plane of the deposited zinc
is parallel to the substrate (0e30�), suggesting a smooth and
4

dendrite-free zinc anode [49]. On the contrary, the deposited zinc
surface with the (100) plane will present a high angle of 70e90� to
the substrate, forming zinc dendrites [50]. For the battery with the
TiO2-PE separator, the (002) peak intensity at the discharge
endpoint keeps increasing from 17.0 to 33.6 counts in the first four
cycles, and then the peak intensity becomes steadied around 32
counts in the following cycles. The i002/i100 ratio at the discharge
endpoint rises from 2.6 to 6.3 and then levels off, which means that
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the proportion of (002) crystal faces reaches a maximum of 86.3 %
(Fig. 3E, Fig. S8). For the battery with GF/A, the (002) peak intensity
at the discharge endpoint achieves 12.4 counts in the first cycle and
then decreases to 6.2 counts after 11 cycles. The i002/i100 ratio de-
creases from 4.0 to 1.3, which means that the proportion of (002)
crystal faces is about 56.5 % (Fig. 3F, Fig. S9). This result implies that
the Zn crystal orientation along the (002) direction increases dur-
ing cycling when using the TiO2-PE as the separator.

Morphological analysis of the cycled electrodes was performed
using SEM. The results reveal that the Zn crystals on the surface of
the TiO2-PE separator exhibit a continuous and flat morphology.
However, the Zn crystals on the GF/A surface display varying crystal
morphologies, with some growing at a certain inclination and
others growing horizontally (Fig. 4E and Fig. S10B). These obser-
vations suggest that the growth of Zn crystals is influenced by the
surface properties of the electrode material. The SEM images reveal
that the Zn crystal is deposited not only on the GF/A separator but
Fig. 4. (AeB) (A) {0001} and (B) {11e20} pole figures of deposited Zn on the TiO2-PE separato
images of Zn deposition/stripping on TiO2-PE (1e4) and GF/A (5e8) separators (scale bar: 1
and GF/A separator.

5

also in it. As shown in Fig. 4A and B, pole figures of Zn deposited on
TiO2-PE separators represent the lattice-preferred orientation,
measuredwith the electron backscatter diffraction. The SEM results
and pole figures suggest that utilizing TiO2-PE as separators enables
the preferential growth of (002) planes of Zn during the electro-
deposition process, whereas the out-of-plane growth of Zn crystals
oriented with the (100) and (101) facets are dominant with the GF/
A separator. This conclusion is supported by the electrochemical
performance and in-situ XRD results with different separators. The
superior performance of the TiO2-PE separator is attributed to its
small pore size and narrow size distribution (Fig. 4C). During the
discharge process, the large pore size of the GF/A separator (Fig. 4D
and Fig. S11) allows the Zn crystal to grow between the fibers,
resulting in discontinued and inactive Zn. These out-of-plane-
grown Zn crystals accumulate during cycling and form dendrites.
Since the TiO2-PE pore size (0.21 mm) is one order smaller than the
average crystal size of Zn (1.0 mm), the Zn crystals cannot directly
rs; (CeD) the pore size distribution of the (C) TiO2-PE and (D) GF/A separators; (E) SEM
mm); (F) Schematic zinc metal deposition/stripping diagram on the TiO2-PE separator
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grow in the pore structure. Thus, the Zn metal tends to grow hor-
izontally when confined at the TiO2-PE separator and Ti electrode
interface (Fig. 4E and F).

3. Conclusion

This study presents a facile and industrializable method for
manufacturing an ultrathin TiO2-grafted PE separator for aqueous
Zinc batteries. The battery with TiO2-PE separator shows excellent
electrochemical performance compared with commercial PP or
glassy fiber separators. We further demonstrated that separator
pore size plays an essential role in the (002) oriented Zn deposition,
resulting in a stable and long cycling performance.
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