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ABSTRACT: N-doped carbon-confined transition metal nanocatalysts display efficient oxygen reduction reaction (ORR)
performance comparable to commercial Pt/C electrocatalysts because of their efficient charge transfer from metal atoms to active N
sites. However, the sheathed active sites inside the electrocatalysts and relatively large-size confined metal particles greatly restrict
their activity improvement. Here, we develop a facile and efficient “MOFs plus ZIFs” synthesis strategy to successfully construct
ultrafine sub-5 nm Co nanodots confined into superficial N-doped carbon nanowires (Co@C@NC) via a well-designed synthesis
process. The unique synthesis mechanism is based on low-pressure vapor superassembly of thin zeolitic imidazolate framework
(ZIF) coatings on metal−organic framework substrates. During the successive pyrolysis, the preferential formation of the robust N-
doped carbon shell from the ZIF-67 shell keeps the core morphology without shrinkage and limits the growth of Co nanodots.
Benefiting from this architecture with accessible and rich active N sites on the surface, stable carbon confined architecture, and large
surface area, the Co@C@NC exhibits excellent ORR performance, catching up to commercial Pt/C. Density functional theory
demonstrates that the confined Co nanodots efficiently enhance the charge density of superficial active N sites by interfacial charge
transfer, thus accelerating the ORR process.
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1. INTRODUCTION

The oxygen reduction reaction (ORR) is of crucial importance
in sustainable energy storage and conversion devices, including
fuel cells and metal-air batteries.1−3 The materials based on Pt
are the benchmark ORR catalysts, but their practical
applications are constrained by the scarcity, high cost, and
poor stability.4−6 Developing efficient nonprecious metal-based
catalysts is desirable to replace the catalysts based on Pt.7−9

However, the performance of these catalysts is mainly limited
by their intrinsic activity and accessible number of active
sites.10 To obtain catalysts with high intrinsic active sites, a
variety of nonprecious metal-based materials have been
explored. Among them, the catalysts based on transition
metal/metal carbide/metal oxide nanoparticles encapsulated in
nanostructured N-doped carbon (M@NC, M = Fe, Co, Cu,

etc.) have been widely studied in which the accessible surface
N boosted by transition metal is considered as the active site.11

Wang et al. reported Fe/Fe3C nanoparticles encapsulated in N-
doped graphene and carbon nanotubes with N active sites
boosted by Fe.12 To further enhance ORR performance,
increasing accessible active sites of M@NC is believed to be a
key factor. Generally, the architecture of these catalysts is
always determined by the morphology and structure of
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precursors. Therefore, it is essential to design suitable
precursors to synthesize M@NC catalysts with a high surface
area and rich accessible active sites.13,14

Metal−organic frameworks (MOFs) are porous crystal
compounds assembled from metal ions/clusters coordinated
with organic ligands.15−18 Benefiting from the fantastic
properties of controllable architecture and high surface area,
MOFs have been considered to be promising precursors for
fabricating M@NC catalysts with high surface area and tunable
surface properties.19−22 Lai et al. reported controllable Cu@
NC nanocatalysts by annealing adjustable Cu-zeolitic imida-
zolate framework (ZIF)-8 nanoparticles.23 Zhang et al.
designed CoFe@NC hollow spheres by pyrolyzing MIL-101/

ZIF-67 composites.24 As expected, these M@NC catalysts
achieved a high specific surface area. However, because of
homogeneous N doping in MOF precursors during the
synthesis process, the M@NC catalysts derived from these
MOFs have doped N sites through the whole carbon
materials.25,26 Despite some accessible N sites activated on
the surface, most N sites are deeply sheathed without
accessibility because the ORR is performed on the surface.27

In addition, most these catalysts have relatively large metal
particles (>10 nm), further reducing the accessible active sites
on the surface.28 So far, it is still necessary to develop a suitable
strategy to design M@NC catalysts with ultrafine metal

Figure 1. Schematic illustration of the synthesis process and structure of Co@C@NC.

Figure 2. (a) XRD patterns of MOF-74, ZIF-67, and MOF-74@ZIF-67 nanowires. (b) FTIR spectra of MOF-74, ZIF-67, and MOF-74@ZIF-67
nanowires. (c) SEM image, (d) TEM image, and (e) HAADF-STEM image with the corresponding EDS element mapping of the MOF-74@ZIF-
67 nanowire.
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nanodots confined and most accessible active N sites focusing
on the surface.
Herein, a facile “MOFs plus ZIFs” strategy following

controlled pyrolysis has been developed to design a new type
of ultrafine sub-5 nm Co nanodots confined into superficial N-
doped carbon nanowires (Co@C@NC). This “MOFs plus
ZIFs” strategy achieves the uniform growth of thin ZIF-67
coating on MOF-74. The preferential pyrolysis of ZIF-67 can
generate stable N-doped carbon shells and hinder the growth
of Co nanodots. Benefiting from the well-designed process, the
resultant Co@C@NC can simultaneously achieve a high
surface area and rich accessible active sites doping on the
surface. The as-prepared catalyst exhibits high catalytic activity
in alkaline electrolyte with a half-wave potential of 0.83 V,
catching up to the commercial Pt/C catalyst. The enhanced
charge transfer between Co nanodots and N-doped carbon
shells is also proved by density functional theory (DFT)
calculations.

2. RESULTS AND DISCUSSION
The overall fabrication process of Co@C@NC is shown in
Figure 1. MOF-74 nanowires (∼70 nm in diameter and ∼20
μm in length) (Figure S1) were prepared by the reported
hydrothermal method.29 Then, these nanowires were activated
to remove water molecules from the channels and avoid water
participating in the subsequent reaction. The activated MOF-
74 nanowires and 2-methylimidazole (2-MIM) powders were
both placed in a common system and treated at 120 °C under
low pressure. Then 2-MIM was converted from solid to gas
and filled the entire reaction system. The gaseous 2-MIM
ligands reacted with MOF-74 on the surface, forming in situ
ZIF-67 shells. During this process, 2-MIM released protons
and coordinated with Co2+ to form ZIF-67, while the ligands of
MOF-74 accepted protons and released 2, 5-dihydroxyparaxic
acid (DHTA).30,31 The reaction equation could be described
as follows:

2 MIM (g) MOF 74(s)

MOF 74@ZIF 67(s) DHTA(g)

− + −

→ − − + (1)

The formation of uniform ZIF-67 shells on MOF-74
nanowires was proved. The X-ray diffraction (XRD) pattern
of MOF-74@ZIF-67 revealed typical diffraction peaks
corresponding to MOF-74 and ZIF-67 (Figure 2a).32−34

Fourier transform infrared spectroscopy (FTIR) of MOF-
74@ZIF-67 also revealed the feature vibrations of MOF-74
and ZIF-67 (Figure 2b). The adsorption band at 421 cm−1

represented the Co−N vibration, indicating that Co2+ ions
were successfully coordinated with deprotonated 2-MIM.35

The scanning electron microscopy (SEM) image showed most
MOF-74@ZIF-67 maintained the nanowire morphology
(Figure 2c). The transmission electron microscopy (TEM)
image clearly indicated the core-shell feature of the MOF-74@
ZIF-67 nanowire (Figure 2d). The thickness of the uniform
ZIF-67 shell is ∼20 nm and the diameter of the MOF-74 core
remained at ∼60 nm. Comparing the diameter of MOF-74
before reaction (∼70 nm), it can be estimated that the
transformation content of the MOF-74 core in the ZIF-67 shell
is ∼27%. High-angle annular dark-field scanning TEM
(HAADF-STEM) and the corresponding energy-dispersive
X-ray spectroscopy (EDS) mapping images of MOF-74@ZIF-
67 showed the homogeneous distribution of C, O, N, and Co
elements in the overall MOF-74@ZIF-67 (Figure 2e).

Therefore, all the above results indicated uniform ZIF-67
shells were formed on the surface of MOF-74.
Co@C@NC was prepared by the controlled pyrolysis of the

MOF-74@ZIF-67 precursor in an Ar/H2 atmosphere. For
insight into the morphology evolution after pyrolysis, MOF-74
was directly sintered into Co@C nanowires under the same
condition for comparison. The Co@C@NC sample retained
the morphology of nanowires in the SEM image (Figure 3a).

The TEM image revealed the Co@C@NC had a smooth
surface with ultrafine Co nanodots uniformly confined (Figure
3b). There was no obvious shrinkage in the Co@C@NC
(∼100 nm in diameter) compared to the MOF-74@ZIF-67
precursor. However, the surface of Co@C was rough with
many protrusions and most large Co particles (>10 nm) were
exposed (Figure S2). The diameter of Co@C (∼40 nm) had a
significant shrinkage compared to that of the MOF-74
precursor (∼70 nm). It could be inferred that MOF-74
nanowires suffered from severe collapse during the pyrolysis
process, but ZIF-67 had less collapse and provided a relatively
stable carbon skeleton to inhibit the growth of Co particles
under the same condition. The red dotted circles reflected that
the size of most Co nanodots is below 5 nm. These small Co
nanodots were expected to boost more accessible N active
sites.36 The diffraction ring in the corresponding selected area
electron diffraction (SAED) pattern (inset in Figure 3b) and a
lattice fringe space of 0.224 nm in the high-resolution TEM
(HRTEM) image (Figure 3c) was attributed to the (111)
crystal plane of Co.37 The EDS element mapping shown in
Figure 3d revealed that C and N elements distributed wider
than Co, which was more obvious in high magnification
(Figure S3), indicating almost all the Co nanodots were coated
by superficial N doped C shells. As shown in Figure S4, N
elements are mainly distributed at the edges, indicating
superficial N doping along the radial direction of Co@C@NC.
To explore the formation mechanism of core-shell Co@C@

NC, thermogravimetric (TG) and differential scanning
calorimetry (DSC) analyses were performed for MOF-74,
MOF-74@ZIF-67, and ZIF-67 (Figure S5). The TG curve of
MOF-74@ZIF-67 demonstrated that its mass loss centered on
two distinct temperature ranges, including 16% mass loss in
280-400 °C and 17% mass loss in 440−530 °C.38,39 These two
mass losses are the pyrolysis of ZIF-67 and MOF-74,
respectively. The DSC curve of MOF-74@ZIF-67 indicated
that the exothermic peak position was 460 °C, lower than that
of MOF-74 (530 °C), further proving the preferential pyrolysis

Figure 3. (a) SEM image of Co@C@NC nanowires; (b) TEM image
and SAED pattern of a single Co@C@NC nanowire; (c) HRTEM
image; and (d) corresponding EDS element mapping of C, N, and Co
of Co@C@NC nanowires.
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of the ZIF-67 shell. Combined with different morphologies of

Co@C@NC and Co@C, the preferential pyrolysis of the ZIF-

67 shell could form a stable and denser N-doped carbon shell

on the surface, which inhibited the collapse of the carbon

skeleton and limited the growth of Co nanodots.
XRD patterns of both Co@C@NC and Co@C showed

sharp peaks at 75.8, 51.5, and 44.2° corresponding to (220),

Figure 4. (a) XRD patterns, (b) Raman spectra, (c) N2 absorption-desorption isotherms with pore size distributions, (d) X-ray photoelectron
spectroscopy (XPS) survey spectra, and (e) corresponding element contents of Co@C@NC and Co@C. (f) High-resolution N 1s XPS spectrum
of Co@C@NC.

Figure 5. (a) Rotating disk electrode (RDE) polarization curves of the synthesized Co@C@NC, Co@C, and Pt/C-20% at a scan rate of 5 mV s−1

and a rotation speed of 1600 rpm; (b) ORR polarization curves and (c) the corresponding K−L plots of the Co@C@NC catalyst at different
rotation rates; (d) hydrogen peroxide yield (black) and electron transfer number (red) of Co@C@NC; (e) I-t chronoamperometric response of
Co@C@NC and Pt/C-20% at 0.7 V with a rotation rate of 1225 rpm; and (f) chronoamperometric response for the Co@C@NC and Pt/C-20%
catalyst at 0.7 V in 0.1 mol L−1 KOH (200 mL) solution with the introduction of methanol (0.3 mL). All measures were performed in the O2-
saturated KOH solution.
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(200), and (111) planes of metallic Co (JCPDS No.: 01-089-
4307), respectively (Figure 4a). The broad peak for graphitic
carbon (002) at 26.5° in the Co@C@NC pattern showed
higher intensity than that in the Co@C pattern, implying a
higher graphitization degree of Co@C@NC.40 The Raman
spectroscopy of both samples showed the typical D-band and
G-band (Figure 4b). The relative intensity ratio of the D-band
and G-band (ID/IG) of Co@C@NC was about 1.48, higher
than that of Co@C (ID/IG = 1.26), indicating that Co@C@
NC had more carbon defects on the surface than Co@C.41

The nitrogen adsorption−desorption isotherm revealed typical
IV curves of both samples (Figure 4c).42 The pore size
distribution further confirmed that Co@C contained more
mesopores, while Co@C@NC mainly contained micropores
(inset of Figure 4c). The Brunauer−Emmett−Teller surface
area of Co@C@NC and Co@C was calculated to be 350.9
and 225.7 m2 g−1, respectively. Consequently, ZIF-67 could
produce more micropores and relatively higher specific surface
area for the final catalyst than MOF-74 in controlled pyrolysis.
The XPS spectrum of Co@C@NC revealed typical peaks of C,
Co, N, and O as expected (Figure 4d). Figure 4e shows the
content of each element in Co@C@NC and Co@C. The
superficial content of Co and N reached as high as 4.17 and
3.23 wt %. Inductively coupled plasma mass spectrometry
analysis further showed the total content of Co is 21.3 wt %.
This fact indicated that Co nanodots are encapsulated in
superficial N-doped carbon. The high-resolution N 1s XPS
spectrum of Co@C@NC was deconvoluted into four peaks:
pyridine-N (398.5 eV), pyrrole-N (399.3 eV), graphite-N
(400.9 eV), and oxidation-N (402.1 eV) (Figure 4f). High
contents of graphite-N and pyridine-N in Co@C@NC were
considered to promote the adsorption of oxygen and the 4e−

reduction.43 High-resolution Co 2p3/2 and 2p1/2 spectra of
Co@C@NC could be deconvoluted into metal Co bond and
multivalent Co bond (Figure S6). The metal Co stronger
energy in Co@C@NC demonstrated that Co nanodots were
tightly encapsulated by N-doped carbon.14,20

To investigate the ORR activity of Co@C@NC, the linear
sweep voltammetry (LSV) was used to evaluate the designed
catalyst as shown in Figure 5a. The initial potential (Eonset) and
half-wave potential (E1/2) of Co@C@NC were 0.92 and 0.83
V, respectively, which were close to those of Pt/C (20 wt %).
These facts indicated the high ORR activity of the well-
designed Co@C@NC catalyst. To prove the location of the
active site, Co@C@NC was etched by 25% H2SO4 to obtain
superficial N-doped carbon nanowires (C@NC) for compar-
ison. The XRD pattern of C@NC revealed no peak of metallic

Co (Figure S7a) and few Co nanodots could be found in the
TEM image (Figure S7b). Obviously, the reduction potential
and current density of the Co@C@NC catalyst were much
higher than those of Co@C and C@NC, indicating that the
active site is at the N atom boosted by Co nanodots. The
electrochemically active surface area of the Co@C@NC
catalyst is calculated to be as high as 62.8 mF cm−2, indicating
more exposed active sites (Figure S8). Moreover, the catalytic
current increased with speed typically in the LSV curves of
Co@C@NC (Figure 5b). The corresponding Koutecky−
Levich plots indicated that the average electron transfer
number (n) was ∼3.9 in the voltage range from 0.3 to 0.7 V
(Figure 5c). The ring-shaped RDE examination revealed that
the electron transfer number was maintained at 3.99−4.00 in
the potential range of 0.2−0.8 V (Figure 5d), consistent with
the RDE results. The yield of H2O2 did not exceed 4% in the
same potential range. The results above suggested that the
Co@C@NC catalyst experienced a near 4e− ORR proc-
ess.39,44,45 The durability and methanol tolerance of Co@C@
NC and Pt/C were compared. The stable current at 10 s was
recorded as 100% activity in these examinations. The activity
retention rate of Co@C@NC was as high as 95% after 20,000
s, significantly higher than that of Pt/C (88%) (Figure 5e).
The TEM image showed that the original morphology of Co@
C@NC was maintained after durability examination (Figure
S9). In addition, XRD patterns and XPS spectra before and
after durability examination further demonstrated the excellent
structural stability of Co@C@NC (Figure S10). When
methanol was injected to the electrolyte at 150 s, no obvious
change was visible in the current density for Co@C@NC,
indicating its excellent methanol tolerance (Figure 5f).
However, the current density of the Pt/C catalyst was reduced
obviously, which was attributed to the catalytic oxidation of
methanol.46 This synthesized Co@C@NC catalyst showed
excellent ORR activity compared to similar electrocatalysts
reported recently, further illustrating the superiority of the
designed structure (Table S1).
To reveal the effect of Co nanodots on N-doped C shells,

DFT simulations were used to calculate the charge density
redistributions of four systems: Co nanodots encapsulated in
N-free, pyrrole-N, pyridine-N, and graphite-N-doped carbon
shells (denoted as Co@C, Co@pyrr-NC, Co@pyri-NC, and
Co@grap-NC). The introduction of pyrrole-N, pyridine-N,
and graphite-N changed the charge density of the Co@C
system and accumulated charge at the N sites (Figure 6 a−d).
These N-doped systems were more conducive to electron
transfer at N sites.47 Density of states (DOS) was an effective

Figure 6. Differential charge density redistributions of (a) Co@C, (b) Co@pyrr-NC, (c) Co@grap-NC, and (d) Co@pyri-NC systems. Atoms
with blue, brown, and white represent Co, C, and N atoms. Blue and yellow contours represent charge loss and charge accumulation.
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parameter to analyze the catalytic activity for carbon-based
catalysts.48 In the DOS of spin down, the states near the Fermi
level of these four systems were almost consistent (Figure
S11a). However, the DOS of spin up showed the systems
containing N had more states than Co@C near the Fermi level
(Co@pyrr-NC > Co@grap-NC > Co@pyri-NC > Co@C)
(Figure S11b). The extra DOS near the Fermi level was
expected to enhance the electrochemical activity.49 The charge
density redistribution and the DOS indicated that the local
dipoles formed between Co nanodots and external N-doped C
shells, which promoted the electron transfer in the ORR
process.50

3. CONCLUSIONS

In summary, a facile “MOFs plus ZIFs” synthesis strategy was
developed to successfully construct a new type of ultrafine sub-
5 nm Co@C@NC. The “MOFs plus ZIFs” synthesis
mechanism is the in situ growth of a thin ZIF-67 shell on
MOF-74 substrates by low-pressure vapor superassembly.
Under controlled pyrolysis, the preferential pyrolyzed ZIF-67
can form stable superficial N-doped carbon shells, which
inhibit the structural collapse and growth of Co nanodots.
Benefiting from the well-designed process, this Co@C@NC
catalyst achieves rich and accessible active sites focusing on the
surface and high specific surface area, thus exhibiting excellent
ORR performance. The experimental and DFT analyses
indicate the effects of Co nanodots on N-doped carbon shells.
These effects change charge density redistributions and
increase the DOS near the Fermi level, enhancing the electron
transfer in the ORR process. Considering the diversity of
substrates and MOFs, this strategy provides a new direction for
the rational design of high-performance catalysts.
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