© 2020 Wiley-VCH GmbH

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.202007840

Electrochemically Exfoliating MoS₂ into Atomically Thin Planar-Stacking Through a Selective Lateral Reaction Pathway

Xuelei Pan, Mengyu Yan, Congli Sun, Kangning Zhao, Wen Luo, * Xufeng Hong, Yunlong Zhao, Lin Xu, and Liqiang Mai*

Supporting information

Electrochemically Exfoliating MoS₂ into Atomically Thin Planar-Stacking Through a Selective Lateral Reaction Pathway

Xuelei Pan, Mengyu Yan, Congli Sun, Kangning Zhao, Wen Luo*, Xufeng Hong, Yunlong Zhao, Lin Xu, Liqiang Mai*

Supplementary Methods

Fitting of Raman spectra. The Raman spectra of MoS₂ and MoSe₂ are fitted by LabSpec 6 software. Firstly remove baseline polynomial fitting and then search peaks and fit by Gauss-Lorentz line shape. The Gauss-Lorentz line shape is described as: $V(v-v_0)=\int G(v'_0-v_0)L(v-v'_0)dv'_0$, $G(v-v_0)=Aexp\frac{-(v-v_0)}{2(\omega/2)^2}$, $L(v-v_0)=\frac{\omega/2\pi}{(v-v_0)^2+(\omega/2)^2}$. where v is Raman shift, ω is the full width at half maximum (FWHM), v_0 is the position of the peak. The wavenumber difference between E^{1}_{2g} (~383 cm⁻¹) and A_{1g} (~408 cm⁻¹) of MoS₂ is calculated by $\Delta v = v_{A_{1g}} - v_{E_{2g}^{1}}$.

Supplementary Figures

Figure S1. (a) Cyclic voltammetry (CV) curves of individual MoS_2 sheet in 1 M ZnSO₄ solution (first 10 cycles, -0.4 - 0.8 V vs. SCE, scan rate 10 mV/s). Inset: the optical image of a typical on-chip device. (b) CV curves of individual MoS_2 sheet in 1 M ZnSO₄ solution at the oxidation region (first 10 cycles, 0.2 - 1.4 V vs. SCE, scan rate 50 mV/s).

Figure S2. Two characteristic Raman mode for 2H-MoS₂. E_{2g}^{1} is the in-plane opposite Mo-S

vibration and A_{1g} is the out-of-plane vibration of S atoms.

Figure S3. (a,b) Raman mapping of E_{2g}^{1} and A_{1g} vibration bands for the initial MoS₂ sheet corresponding to the MoS₂ in Figure 2a. (c,d) Raman mapping of E_{2g}^{1} and A_{1g} vibration bands for MoS₂ sheet after electrochemical treatment corresponding to the MoS₂ sheet in Figure 2c. The color represents the wavenumber of E_{2g}^{1} and A_{1g} peaks.

Figure S4. (a-c) The optical images of individual MoS_2 with basal plane exposed and edge cover by PMMA. (c) and (d) are optical images of MoS_2 after 100 and 200 CV cycles. (d-f) The corresponding optical images of individual MoS_2 with edge exposed. The arrow points to the reaction region.

Figure S5 (a) Optical image of a MoS_2 sheet after electrochemical exfoliation. (b) Raman mapping of the intensity of A1g mode. (c) The selected Raman spectra along the line in (a). The peak positions of J_1 , J_2 , and J_3 are marked by red bands. The peak positions of MoO_x are marked by asterisks and blue bands.

Figure S6. (a) AFM image of a typical MoS_2 nanosheet corresponding to the MoS_2 sheet in Figure 4b after electrochemical treatment on Ti foil with Si wafer as the substrate. (b) The height profile along line 1 and line 2.

Figure S7. First tens of CV curves of individual $MoSe_2$ sheet in 1M ZnSO₄ (scan window: 0.2-1.4 V vs. SCE, scan rate: 50 mV/s).

Figure S8. (a) Optical image of individual $MoSe_2$ sheet on-chip device with PMMA as the insulating layer. (b) Raman mapping of the intensity and (c) wavenumber for the A_{1g} vibration band. (d) The optical image, (e) Raman mapping of intensity, and (f) wavenumber for $MoSe_2$ sheet after electrochemical treatment. (g-i) Raman spectra of three selected points in (a).

Figure S9. (a-f) The *in situ* optical snapshots of $MoSe_2$ sheets on Ti foil during an electrochemical process in the ZnSO₄ electrolyte (electrode potential first increases to 1.4 V vs. SCE and then back). It is worth noting that (e) is the image of $MoSe_2$ at 1.35 V during the anodic process and (f) is at 1.35 V during the cathodic process.

Figure S10. (a) Optical image of $MoSe_2$ sheet on Ti foil after electrochemical treatment. The transparent trace shows the left ultrathin $MoSe_2$ on Ti foil. (c) The Raman mapping of the intensity of the A_{1g} vibration band. (d) The corresponding mapping of the wavenumber of the A_{1g} vibration band.

Figure S11. (a) AFM image of a typical MoSe₂ nanosheet after electrochemical treatment on Ti foil with Si wafer as a substrate. (b) The corresponding height profile along line 1 and line

2.

Figure S12. (a) An overview of the cross-profile STEM image of the exfoliated MoSe₂ sheet (b-d) The magnified STEM images of edge, transition zone, and bulk, respectively.

Figure S13. (a-f) Optical images of VSe_2 on Ti foil during an anodic process at 0.8, 0.9, 1.0, 1.05, 1.1, and 1.2 V vs. SCE in 1M ZnSO₄. The white arrows point to an individual VSe_2 sheet on Ti foil.

Figure S14. (a) Optical image of MoS_2 sheet on Ti foil after electrochemical treatment in the 1M Na₂SO₄ solution. The left of this sheet in green color is the domain involved in exfoliation. (c) The Raman mapping of the sum intensity of E^{1}_{2g} and A_{1g} vibration bands. (d) The corresponding mapping of the wavenumber difference between E^{1}_{2g} and A_{1g} vibration

bands.

Figure S15. (a) Optical image of MoS_2 sheet on Ti foil after electrochemical treatment in the 1M Li₂SO₄ solution. (c) The Raman mapping of the sum intensity of E^{1}_{2g} and A_{1g} vibration bands. (d) The corresponding mapping of the wavenumber difference between E^{1}_{2g} and A_{1g} vibration bands.

Figure S16. (a) Structure of R6G molecule. (b) Raman spectra of R6G on exfoliated MoS_2 and Ti foil substrate. The enhancement factor is calculated through the intensity of peaks at 613 cm^{-1} .