Electronic Supplementary Information

Enveloping SiO_x in N-Doped Carbon for Durable Lithium Storage via an Eco-

Friendly Solvent-Free Approach

Guangwu Hu,^{‡a} Kunzhe Zhong,^{‡a} Ruohan Yu,^a Zhenhui Liu,^a Yuanyuan Zhang,^a Jinsong Wu,^{ab} Liang Zhou, ^{*ac} and Liqiang Mai^{*ac}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China

^bNRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, P. R.

China

^cFoshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, P. R. China

*Corresponding author: Liang Zhou (Email: liangzhou@whut.edu.cn); Liqiang Mai (Email: mlq518@whut.edu.cn)

Fig. S1 Digital photos of raw materials before curing (a), SiO_x@NC precursor before calcination (b), and SiO_x@NC powder (c).

Fig. S2 Digital photos showing the scalable synthesis of $SiO_x@NC$.

Fig. S3 XRD patterns of $SiO_x@NC$ and bulk SiO_x .

Fig. S4 PSD curves of SiO_x@NC and SiO_x-BM.

Fig. S5 N₂ adsorption/desorption isotherms of $SiO_x@NC$ (a) and bulk SiO_x (b).

Fig. S6 High-resolution Si2p XPS spectrum of bulk SiO_x.

Fig. S7 High-resolution C1s (a), N1s (b), and O1s (c) XPS spectra of $SiO_x@NC$.

Fig. S8 Selected galvanostatic charge-discharge profiles of NC at 200 mA $g^{-1}(a)$, charge-discharge curves of NC at various current densities (b).

Fig. S9 Selected galvanostatic charge-discharge profiles of bulk SiO_x at 200 mA g⁻¹ (a), chargedischarge curves of bulk SiO_x at various current densities (b).

Fig. S10 Charge-discharge curves of $SiO_x@NC$ at various current densities.

Fig. S11 Long-term cycling performance of $SiO_x@NC$ with a lower carbon content at 500 mA g⁻¹.

Ref.	Reversible Capacity (mAh g ⁻¹)	Cycling Performance (mAh g ⁻¹)	Rate Capability (mAh g ⁻¹)	Electrochemical Window
This work	774 (200 mA g ⁻¹)	112 % (500 mA g ⁻¹ , 500 cycles)	345 (5 A g ⁻¹)	0.01 – 1.5 V
[S1]	570 (100 mA g ⁻¹)	≈ 102 % (100 mA g ⁻¹ , 100 cycles)	673 (800 mA g ⁻¹)	0.01 – 2.5 V
[S2]	906 (100 mA g ⁻¹)	≈ 80 % (100 mA g^{-1}, 350 cycles)	410 (800 mA g ⁻¹)	$0.0 - 3.0 \ V$
[83]	530 (500 mA g ⁻¹)	≈ 70 % (500 mA g $^{-1}$, 500 cycles)	231 (2 A g ⁻¹)	0.01 – 3.0 V
[S4]	1032 (100 mA g ⁻¹)	≈ 104 % (500 mA g ⁻¹ , 150 cycles)	309 (1 A g ⁻¹)	0.01 – 3.0 V
[85]	1107 (200 mA g ⁻¹)	≈ 133 % (1 A g ⁻¹ , 1000 cycles)	532 (2 A g ⁻¹)	0.01 – 3.0 V
[S6]	645 (65 mA g ⁻¹)	90 % (325 mA g ⁻¹ , 500 cycles)	549 (3.25 A g ⁻¹)	0.005 – 2.0 V
[S7]	965 (100 mA g ⁻¹)	91 % (500 mA g ⁻¹ , 400 cycles)	620 (600 mA g ⁻¹)	0.01 – 3.0 V
[S8]	1168 (100 mA g ⁻¹)	≈ 99 % (500 mA g $^{-1}$, 500 cycles)	725 (1 A g ⁻¹)	0.01 – 3.0 V
[89]	653 (120 mA g ⁻¹)	≈ 76 % (300 mA g $^{-1}$, 500 cycles)	582 (3 A g ⁻¹)	$0.005 - 2.0 \ V$
[S10]	765 (500 mA g ⁻¹)	79 % (200 mA g ⁻¹ , 200 cycles)	350 (5 A g ⁻¹)	0.01 – 2.0 V

Tab. S1 Lithium storage performances of various SiO_x -based anode materials.

References:

- [S1] P. Lv, H. Zhao, C. Gao, Z. Du, J. Wang and X. Liu, J. Power Sources, 2015, 274, 542-550.
- [S2] Y. Ren and M. Li, J. Power Sources, 2016, 306, 459-466.
- [S3] W. An, J. Fu, J. Su, L. Wang, X. Peng, K. Wu, Q. Chen, Y. Bi, B. Gao and X. Zhang, J. Power Sources, 2017, 345, 227-236.
- [S4] Z. Li, Q. He, L. He, P. Hu, W. Li, H. Yan, X. Peng, C. Huang and L. Mai, J. Mater. Chem. A, 2017, 5, 4183-4189.
- [S5] Q. Yu, P. Ge, Z. Liu, M. Xu, W. Yang, L. Zhou, D. Zhao and L. Mai, J. Mater. Chem. A, 2018, 6, 14903-14909.
- [S6] Q. Xu, J. Sun, Y. Yin and Y. Guo, Adv. Funct. Mater., 2018, 28, 1705235.

[S7] Z. Liu, D. Guan, Q. Yu, L. Xu, Z. Zhuang, T. Zhu, D. Zhao, L. Zhou and L. Mai, *Energy Storage Mater.*, 2018, 13, 112-118.

[S8] Z. Liu, Y. Zhao, R. He, W. Luo, J. Meng, Q. Yu, D. Zhao, L. Zhou and L. Mai, *Energy Storage Mater.*, 2019, **19**, 299-305.

- [S9] G. Li, J. Li, F. Yue, Q. Xu, T. Zuo, Y. Yin and Y. Guo, Nano Energy, 2019, 60, 485-492.
- [S10] G. Zhu, F. Zhang, X. Li, W. Luo, L. Li, H. Zhang, L. Wang, Y. Wang, W. Jiang, H. K. Liu,
- S. Dou and J. Yang, Angew. Chem. Int. Ed., 2019, 58, 6669-6673.

Fig. S12 The electrochemical impedance spectroscopy plots (a) and their results (b) of $SiO_x@NC$ and bulk SiO_x before cycling, the inset of (a) is equivalent circuit for fitting impedance plot.

Fig. S13 The electrochemical impedance spectroscopy plots (a) and their results (b) of $SiO_x@NC$ and bulk SiO_x after 100 cycles at 200 mA g⁻¹, the inset of (a) is equivalent circuit for fitting impedance plot.

Fig. S14 Top-view SEM images of bulk SiO_x before (a) and after (b) 100 cycles at 200 mA g^{-1} , top-view SEM images of SiO_x@NC before (c) and after (d) 100 cycles at 200 mA g^{-1} .

Fig. S15 HAADF-STEM images and EDS mappings of bulk SiO_x (a-d) and SiO_x @NC (e-h) after 100 cycles at 200 mA g⁻¹.

Fig. S16 Cross-sectional SEM images of bulk SiO_x -based electrode before (a) and after (b) 100 cycles at 200 mA g⁻¹, cross-sectional SEM images of SiO_x @NC-based electrode before (c) and after (d) 100 cycles at 200 mA g⁻¹.

Fig. S17 Selected galvanostatic charge-discharge profiles (a) and cycling performance (b) of LiFePO₄ at 0.2 C (1 C = 170 mA g⁻¹), charge-discharge curves (c) and rate performance (d) of LiFePO₄ at various current densities.