Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.201904118

Insights into the Storage Mechanism of Layered VS₂ Cathode in Alkali Metal-Ion Batteries

Xiao Zhang, Qiu He, Xiaoming Xu, Tengfei Xiong, Zhitong Xiao, Jiashen Meng, Xuanpeng Wang, Lu Wu, Jinghui Chen, and Liqiang Mai*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Supporting Information

Insights into the Storage Mechanism of Layered VS₂ Cathode in Alkali Metal-ion Batteries

Xiao Zhang, Qiu He, Xiaoming Xu, Tengfei Xiong, Zhitong Xiao, Jiashen Meng, Xuanpeng Wang, Lu Wu, Jinghui Chen, and Liqiang Mai*

X. Zhang, Q. He, X. Xu, Z. Xiao, J. Meng, L. Wu, J. Chen, Prof. L. Mai

School of Materials Science and Engineering

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing

Wuhan University of Technology

Wuhan 430070, P. R. China

E-mail: mlq518@whut.edu.cn (Prof. L. Q. Mai)

T. Xiong

Department of Chemistry

City University of Hong Kong

Kowloon 999077, P. R. China

Dr. X. Wang

Department of Physical Science & Technology

School of Science

Wuhan University of Technology

Wuhan 430070, P. R. China

Figure S1. Coulombic efficiencies (a) and energy efficiencies (b) of VS_2 nanosheets at 100 mA g⁻¹ in LIBs, SIBs, and PIBs, respectively.

Figure S2. GITT curves of VS₂ nanosheets in LIBs (a), SIBs (b), and PIBs (c), respectively.

Figure S3. Selected *in-situ* XRD patterns during Li⁺ insertion/extraction process.

Figure S4. Selected *in-situ* XRD patterns during Na⁺ insertion process.

Figure S5. Selected *in-situ* XRD patterns during K^+ insertion process.

Figure S6. *In-situ* XRD patterns collected during the first two discharging/charging processes of VS_2 nanosheets from 13.0 to 36.0° in LIBs (a), from 11.0 to 36.0° in SIBs (b), and from 14.4 to 35.4° in PIBs (c), respectively.

Figure S7. Galvanostatic discharge/charge profiles at 100 mA g⁻¹ (a), cycling performance at 100 mA g⁻¹ (b), rate capability (c), and long-term cycling performance at 500 mA g⁻¹ (d) of VS₂ nanosheets in the voltage range of 1.8-2.8 V.

Figure S8. Schematic illustration of the migration paths for Li^+ (a), Na^+ (b), and K^+ (c) in VS_2 nanosheets.

	VS ₂		
Reference code	01-089-1640		
Crystal system	Hexagonal		
Space group	P-3m1		
а	3.2210		
b	3.2210		
c	5.7550		
Alpha (°)	90.0000		
Beta (°)	90.0000		
Gamma (°)	120.0000		
Z	1.00		

Table S1. Crystal structure information of VS_2

	Li _{0.33} VS ₂	LiVS ₂	Li _{0.33} VS ₂
Reference code	00-034-0751	01-072-0863	00-034-0820
Crystal system	Hexagonal	Hexagonal	Monoclinic
Space group	P-3m1	P-3m1	PE
а	3.2770	3.3803	5.6590
b	3.2770	3.3803	3.2400
C	6.1520	6.1381	6.0500
Alpha (°)	90.0000	90.0000	90.0000
Beta (°)	90.0000	90.0000	91.0000
Gamma (°)	120.0000	120.0000	90.0000
Z	0.90	1.00	2.00

Table S2. Crystal structure information of Li_xVS₂

Table S3. Crystal structure information of Na_xVS₂

	$Na_{0.5}VS_2$	NaVS ₂	NaVS ₂
Reference code	01-089-5280	03-065-3667	01-089-5279
Crystal system	Rhombohedral	Rhombohedral	Rhombohedral
Space group	R3m	R3m	R-3m
а	3.3020	3.3460	3.5660
b	3.3020	3.3460	3.5660
c	21.3100	21.0200	19.6800
Alpha (°)	90.0000	90.0000	90.0000
Beta (°)	90.0000	90.0000	90.0000
Gamma (°)	120.0000	120.0000	120.0000
Z	3.00	3.00	3.00

		K _{0.6} VS ₂			
	Reference code	01-072-1030	_		
	Crystal system	Rhombohedra	I		
	Space group	R3m			
	а	3.2900			
	b	3.2900			
	c	23.5000			
	Alpha (°)	90.0000			
Table S5. A comparison of	Beta (°)	90.0000	inte	rlayer spacing betw	/een
VS_2 and M_xVS_2 for the	Gamma (°)	120.0000		increment rate	
	LI	Bs	SIBs	PIBs	
d (The interlayer spaci VS ₂ , Å)	ng of	5.	755		
d (The interlayer spaci	ng of ^{6.1}	.40 7.103	(Na _{0.5} VS ₂)	7.833 (K _{0.6} VS ₂)	

Table S4. Crystal structure information of $K_{\rm 0.6}VS_{\rm 2}$

M _x VS₂, Å)	(Li _{0.33} VS ₂ , Hexagonal)		
The increment rate (%)	6.69	23.42	36.11