Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Small Micro

Supporting Information

for Small, DOI: 10.1002/smll.202000091

Zn²⁺ Pre-Intercalation Stabilizes the Tunnel Structure of MnO₂ Nanowires and Enables Zinc-Ion Hybrid Supercapacitor of Battery-Level Energy Density

*Qiang Chen, Jialun Jin, Zongkui Kou, Cong Liao, Ziang Liu, Liang Zhou, * John Wang, * and Liqiang Mai*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Supporting Information

Zn²⁺ Pre-Intercalation Stabilizes the Tunnel Structure of MnO₂ Nanowires and Enables Zinc Ion Hybrid Supercapacitor of Battery-Level Energy Density

Qiang Chen,[‡] Jialun Jin,[‡] Zongkui Kou, Cong Liao, Ziang Liu, Liang Zhou,* John Wang,* and Liqiang Mai

Calculations:

The areal capacitances (C_a) of electrodes were measured by galvanostatic discharge method using the following equation:

$$C_a = \frac{I \times \Delta t}{\Delta V \cdot S} \tag{1}$$

where I (mA) is the constant discharging current, Δt (s) is the discharging time, and S (cm²) is the area of electrodes.

The areal energy density (E_a , μ Wh cm⁻²) and power density (P_a , mW cm⁻²) of the Zn-HSCs were obtained from the following equations:

$$E_{a} = \frac{1}{2} \times C_{a} \times \frac{(\Delta V)^{2}}{3600} \times 10^{6} \quad (2)$$
$$P_{a} = \frac{E_{a}}{\Delta t} \times 3600 \times 10^{-3} \quad (3)$$

where ΔV is the discharging voltage range (2.0 V), and Δt is the discharge time (s).

Figure S1. Raman spectra of the MnO_2 nanosheets and Zn_xMnO_2 nanowires.

Figure S2. SEM images of the MnO₂ nanosheet at different magnification.

Electrode	Substrate	Morphology	Thickness	Mass loading [mg cm ⁻²]	Application area	Reference
Zn _x MnO ₂	CC	nanowires	4.2 μm	12	Zn-HSCs	This work
ZnMn ₂ O ₄ @PEDOT	СС	membrane	2.3 μm	6.2	Zn-ion Batteries	Energy Storage Mater. 2019, 21, 154.
Na _{0.5} MnO ₂	CC	nanosheet assembled nanowall arrays	N.A.	1-2	Supercapacitors	Adv. Mater. 2017, 29, 1700804.
MnO ₂	CC	membrane	N.A.	3.6	Zn-ion Batteries	Adv. Mater. 2017, 1700274
α -MnO ₂ @ δ -MnO ₂	CC	nanorod/nanosheets	N.A.	10	Supercapacitors	ACS Nano 2018, 12, 3557
3D-G- ð-MnO ₂	Ni foam	nanosheets	3–4 nm	1.7	Li-O ₂ Batteries	Adv. Energy Mater. 2014, 1301960
ZnMn ₂ O ₄	Ti	mesoscale tubular arrays	150 nm	0.49	Li-ion Batteries	ACS Appl. Mater. Interfaces 2013, 5, 11321
α-MnO ₂ /C	N.A.	nanorods	N.A.	0.5-2	Li-O ₂ Batteries	Energy Environ. Sci., 2013, 6, 519
Zn ₂ (OH)VO ₄	NF	nanosheets	5 µm	4.1	Zn-ion Batteries	Adv. Mater. 2018, 1803181
AC	N.A.	micron particles	N.A.	0.7-1.8	Zn-HSCs	Energy Storage Mater. 2018, 13, 96.

 $\label{eq:stable} \textbf{Table S1.} Comparison of the material thickness and mass loading of Zn_xMnO_2 to several recently reported supercapacitors and batteries.$

Figure S3. (a) TEM (b) HRTEM (c) SAED and (d) element mapping of the MnO₂ nanosheet.

Figure S4. EDS spectraof (a) MnO₂ nanosheets and (b) Zn_xMnO₂ nanowires.

Figure S5. XPS survey spectra of Zn_xMnO₂ nanowires.

Figure S6. SEM images of CC and ACC at different magnification.

Figure S7. XRD patterns of CC and ACC nanoparticles.

Figure S8. CV curves and GCD curves for ACC nanoparticles.

Figure S9. GCD of single electorde at different current density of the Zn_xMnO₂ nanowires.

Figure S10. CV curves (a) and GCD (b) curves collected at different scan rate and current density of the $MnO_2//ACC$ HSCs.

Table S2. Comparison of the capacity performance and energy density of $Zn_xMnO_2//ACC$ to several recently reported supercapacitors and batteries.

Cathode	Anode	Current density) [mA cm ⁻²]	CP areal capacitance [mF cm ⁻²]	Voltage Window [V]	Energy density [µWh cm ⁻²]	Electrolyte	Reference
Zn _x MnO ₂ ^{a)}	ACC ^{a)}	2	1745.8	0-2.0	969.9	2.0 M ZnSO ₄	This work
						+ 0.4 M MnSO ₄	
Zn _x MnO ₂ ^{a)}	ACC ^{a)}	1	1446.6	0-2.0	803.6	PVA /ZnCl ₂ -MnSO ₄ gel	This work
AC ^{a)}	Zn foil ^{a)}	0.16	1297	0.5 - 1.5	115.4	2.0 M ZnSO ₄	Adv. Mater. 2019, 31, 1806005
Carbon nanotube ^{a)}	Zn nanoflakes ^{a)}	1	83.2	0.2 - 1.8	29.6	1.0 M ZnSO ₄	Energy Environ. Sci. 2018, 11, 3367.
G@PANI ^{a)}	Zn foil ^{a)}	0.2	874	0-0.8	410	2.0 M ZnSO ₄	Nanoscale 2018, 10, 13083.
AC ^{a)}	Zn foil ^{a)}	0.08	217.8	0.2 - 1.8	67.2	2.0 M ZnSO ₄	Energy Storage Mater. 2018, 13, 96.
GaN/MnO ₂ / MnON ^{b)}	G/M/M ^{b)}	0.1	1915.5	0 - 1.0	61	6.0 M KOH	J. Mater. Chem. A 2018, 6, 13215.
CoHCF ^{b)}	AC ^{b)}	4.5	351	0-2.0	191.25	$0.5 \mathrm{M} \mathrm{Na}_2 \mathrm{SO}_4$	Nano Energy 2017, 39, 647.
Ni _{0.25} Mn _{0.75} O @C ^{c)}	AC ^{c)}	1	146	0-2.4	N. A	1.0 M LiCl	Adv. Mater. 2017, 29,1703463.

Ni _{0.25} Mn _{0.75} O @C ^{°)}	AC ^{c)}	1	114.8	0-2.4	N. A	1.0 M LiCl/PVA gel	Adv. Mater. 2017, 29,1703463
$V_2O_5 \cdot nH_2O^{d)}$	Graphene ^{d)}	0.75	N. A	N. A	360	3.0 M Zn(CF ₃ SO ₃) ₂	Adv. Mater. 2018, 30, 1703725.
NaV ₃ O ₈ ·1.5H 2O ^{d)}	Zn foil ^{d)}	0.2	N. A	N. A	600	1.0 M ZnSO ₄ + 1.0 M NaSO ₄	Nat. Commun. 2018, 9, 1656
$ZnMn_2O_4^{\ d)}$	Zn foil ^{d)}	0.1	N. A	N. A	404	3.0 M Zn(CF ₃ SO ₃) ₂	J. Am. Chem. Soc. 2016, 138, 12894.
ZnHCF@M nO2 ^{d)}	Zn foil ^{d)}	0.12	N. A	N. A	178.8	0.5 M ZnSO4/PVA gel	J. Mater. Chem. A 2017, 5, 23628.
$Zn_{2}V_{2}O_{7}^{\ d)}$	Zn foil ^{d)}	0.175	N. A	N. A	581	1.0 M ZnSO ₄	J. Mater. Chem. A 2018, 6, 3850.

^{a)} Zn-HSCs; ^{b)} HSCs; ^{c)} Li-ion HSCs ^{d)} Zn-ion batteries

Figure S11. GCD curves of the $Zn_xMnO_2//ACC$ HSCs in different electrolyte.

Figure S12. XRD patterns of the Zn_xMnO_2 samples prepared with different $Zn(NO_3)_2$ feeding amount.

Figure S13. SEM images of Zn_{*x*}MnO₂ samples with different Zn(NO₃)₂ feeding amount: (a, b, c) 2 mmol, (d, e, f) 4 mmol, (g, h, i) 6 mmol, and (j, k, l) 10 mmol.

Figure S14. GCD curves of the Zn_xMnO_2 samples prepared with different $Zn(NO_3)_2$ feeding amount.

Figure S15. XRD patterns of the Zn_xMnO₂, MnO₂ and ACC after cycle testing.

Figure S16. SEM images of (a, b) Zn_xMnO_2 nanowires and (c, d) MnO_2 nanosheets after 5000 cycles testing.

Figure S17. SEM images of the corresponding ACC. (a, b) $Zn_xMnO_2//ACC$ and (c, d) $MnO_2//ACC$ HSCsafter 5000 cycles testing.

Figure S18. (a) XPS survey and (b) Zn 2p spectra of different point, corresponding to point 2 and 3 in Figure 5d.

Figure S19. (a) GCD curves of the $Zn_xMnO_2//ACC$ HSCs at 2 mA cm⁻². (b) Digital photo of the Zn_xMnO_2 nanowires and ACC nanoparticles at different point during the GCD.