Journal of Materials Chemistry A

View Article Online

View Journal | View Issue

PAPER

Cite this: J. Mater. Chem. A, 2020, 8, 6076

Received 3rd January 2020 Accepted 2nd March 2020

DOI: 10.1039/d0ta00073f

rsc.li/materials-a

Introduction

The oxygen reduction reaction (ORR) has become a pivotal process in fuel cells and metal-air batteries.^{1,2} Commercial Pt/C is currently the most widely employed ORR electrocatalyst. However, it suffers from high cost, scarcity, poor stability, and CO/methanol poisoning.^{3–5} Hence, the exploration of alternative electrocatalysts with superior electrocatalytic activity, high stability, and low cost has become increasingly significant.^{6–9}

Metal-nitrogen-carbon based materials (M–N–C, M = Fe, Co, *etc.*) have been identified as an alternative family of ORR electrocatalysts.¹⁰⁻¹⁴ In 1964, Jasinski pioneered the employment of metal phthalocyanines, a family of macrocyclic complexes containing M–N₄ moieties, for the ORR.¹⁵ Later, it was demonstrated that annealing M–N₄ containing compounds in an inert atmosphere could lead to a significantly improved ORR activity.¹⁶ Recently, it was found that the pyrolysis of inexpensive C, N-containing precursors and transition metal species can also lead to M–N–C based ORR catalysts.^{1,17–21} Since then, M–N–C has been extensively investigated.^{22–31}

FeN_x and γ -Fe₂O₃ co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium[†]

Qiang Yu,^a Sitian Lian,^a Jiantao Li,^a Ruohan Yu,^{ab} Shibo Xi,^c Jinsong Wu, ^b Dongyuan Zhao, ^b Liqiang Mai ^a and Liang Zhou ^{*}

The exploration of efficient, stable, and inexpensive oxygen reduction reaction (ORR) electrocatalysts to replace Pt/C in fuel cells and metal–air batteries still remains an ongoing challenge. Herein, we report an efficient ORR electrocatalyst composed of single-atom FeN_x and γ -Fe₂O₃ nanoparticle co-functionalized hollow graphitic carbon nanofibers (FeN_x/Fe₂O₃-CNFs). It is found that the FeN_x species serve as the active sites, while the γ -Fe₂O₃ nanocrystals function as a co-catalyst to boost the ORR catalytic activity. The obtained FeN_x/Fe₂O₃-CNFs exhibit desirable ORR electrocatalytic activity with a 4-electron transfer pathway, a half-wave potential of 0.81 V approaching that of commercial Pt/C, low hydrogen peroxide yields (<6% at 0.2–0.7 V), long-term stability (87.14% after 30 000 s), and excellent methanol tolerance. The assembled Zn–air battery based on the FeN_x/Fe₂O₃-CNFs has an open circuit voltage of 1.51 V and superior energy density of 920 W h kg⁻¹. This work highlights the significant contribution of the co-catalyst in electrocatalysis.

The composition of M–N–C catalysts is relatively complex and they usually contain N-doped carbon, $M-N_x$ moieties, and M-rich nanoparticles. Such complexity makes the real active sites and role of M-rich nanoparticles elusive.^{32–36} It has been generally accepted that $M-N_x$ is the active sites for the ORR. A recent study by Wan *et al.* found that the Fe/Fe₃C in Fe–N–C could boost the ORR performance of FeN_x.³⁴ That is to say, the Fe and/or Fe₃C can function as a co-catalyst during the ORR process. A question arises: is there any other material which can act as a co-catalyst and boost the ORR activity of $M-N_x$ species like Fe or Fe₃C?

Herein, we report the construction of FeN_x and γ -Fe₂O₃ nanoparticle co-functionalized hollow graphitic carbon nanofibers (FeN_x/Fe₂O₃-CNFs). It is found that the γ -Fe₂O₃ nanoparticles can function as a co-catalyst and effectively improve the ORR activity of FeN_x. The FeN_x/Fe₂O₃-CNFs exhibit a halfwave potential approaching that of commercial Pt/C. More importantly, the limiting current density and long-term stability of FeN_x/Fe₂O₃-CNFs in an alkaline medium surpass those of commercial Pt/C. This work highlights the significant contribution of the co-catalyst in electrocatalysis.

Experimental

Synthesis of FeN_x/Fe₂O₃-CNF and FeN_x/Fe₃C-CNF electrocatalysts

Phenolic resin nanofibers (RNFs) were synthesized based on our previous report.³⁷ Typically, the as-made RNF aerogel (0.3 g) and $Fe(NO_3)_3$ ·9H₂O (2.5 mmol) were dispersed in 50 mL water and

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China. E-mail: liangzhou@ whut.edu.cn

^bNanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, P. R. China

^cInstitute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), Singapore 627833, Singapore

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ta00073f

stirred at 25 °C for 24 h to allow the RNF to adsorb the ferric ions. After ferric ion adsorption, the sample was collected by centrifugation and freeze-dried. Subsequently, the sample was carbonized in N₂ at 800 °C for 1 h and treated with 0.5 M H₂SO₄ at 50 °C for 10 h to remove most of the Fe species. The sample was then subjected to pyrolysis at 800 °C for 2 h in N₂ or H₂O/N₂ to obtain the FeN_x/Fe₃C-CNFs and FeN_x/Fe₂O₃-CNFs, respectively.

Characterization

The morphology of the samples was studied using a scanning electron microscope (SEM, JEOL-7100F) and transmission electron microscope (TEM, JEM-2100F and Titan Themis G2 60-300). The X-ray diffraction (XRD) patterns were collected on a Bruker D2 PHASER. The N2 sorption results were obtained on a Tristar-3020 N₂ adsorption analyzer at 77 K. The surface compositions of the catalysts were analyzed using an X-ray photoelectron spectroscopy (XPS) instrument (VG MultiLab 2000). Thermogravimetric analysis (TGA) was performed on a NETZSCH STA 449F5 in air. Raman spectra were obtained by using a HORIBA LabRAM micro-Raman spectrometer. Mössbauer tests were conducted using a Wissel MS-500 spectrometer. A 57Co (Rh) source with an activity of 25 mCi was employed. Velocity calibration was performed with a room temperature γ -Fe absorber. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were obtained at the XAFCA beamline of the Singapore Synchrotron Light Source.

Electrochemical measurements

Electrochemical measurements were carried out with a CHI 760E workstation (Chenhua) in a standard three-electrode system. The well-dispersed inks were prepared by mixing 5 mg FeN_x/Fe₂O₃-CNFs and 5 mg Vulcan XC72R carbon, which were then added into 800 µL isopropanol, 150 µL deionized water, and 50 µL Nafion solution. After thorough ultrasonic treatment, 10 µL of the well-dispersed ink was dropped onto a glassy carbon electrode (GCE) surface with an area of 0.196 cm². A 0.1 M fresh O₂-saturated KOH solution was used as the electrolyte in all the ORR tests. The GCE, a Pt sheet, and a saturated calomel electrode (SCE) were used as the working electrode, counter electrode, and reference electrode, respectively. All potentials were calibrated to the reversible hydrogen electrode (RHE) on the basis of the Nernst equation: E(RHE) =E (SCE) + 0.0591 \times pH + 0.241. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) curves were recorded at 5 and 10 mV s⁻¹, respectively. LSV curves at different rotation rates were obtained using a rotating disk-electrode (RDE). The electron transfer number (n) at different potentials was calculated based on the Koutecky-Levich (K-L) equation:

$$\frac{1}{J} = \frac{1}{J_{\rm K}} + \frac{1}{0.62nFD_0^{2/3}C_0 v^{-1/6}\omega^{1/2}}$$

where J and $J_{\rm K}$ are the measured current density and kinetic current density, respectively; n stands for the electron transfer number; F is the Faraday constant (96 500 C mol⁻¹); C_0 is the

saturated concentration of O_2 in 0.1 M KOH (1.2 × 10⁻⁶ mol cm⁻³); D_0 is the diffusion coefficient of the O_2 (1.87 × 10⁻⁶ cm² s⁻¹) solution; ν is the kinematic viscosity (0.01 cm² s⁻¹); and ω is the angular rotation rate of the electrode (rad s⁻¹).

The percentage of H_2O_2 and *n* were also calculated using a rotating ring-disk electrode (RRDE) according to the following equations:

$$H_2O_2 \ \% = 200 \frac{I_r/N}{I_d + (I_r/N)}$$

$$n = \frac{4I_{\rm d}}{I_{\rm d} + (I_{\rm r}/N)}$$

where I_d and I_r are the disk current and ring current, respectively. And *N* is the current collection efficiency (0.37).

Tolerance to methanol. LSV curves at a rotation rate of 1600 rpm were obtained to evaluate the methanol tolerance of FeN_x/Fe_2O_3 -CNFs and the Pt/C catalyst. 3 M methanol was injected into the alkaline medium.

KSCN toxicity tests. To investigate the effect of $\text{Fe}-N_x$ on the ORR activity of $\text{Fe}N_x/\text{Fe}_2O_3$ -CNFs, a 10 mM fresh KSCN solution was injected into the alkaline medium before the LSV tests.

Zn-air battery assembly. Zn-air batteries were constructed with a polished Zn plate (thickness: 0.25 cm) as the anode, hydrophobic carbon cloth (W1S1009, CeTech Co., Ltd) loaded with well-dispersed ink as the air cathode, and 6.0 M KOH as the electrolyte. The ink is the same as that in the above ORR test and the mass loading of the catalyst is 1 mg cm⁻². Zn-air battery performance was tested in air using a customized electrochemical cell.

Results and discussion

The synthesis of FeN_x/Fe₂O₃-CNFs involves three major steps: (I) ferric ion adsorption, (II) carbonization, and (III) steam activation (Fig. 1). 3-Aminophenol–formaldehyde RNFs prepared by a scalable sol–gel method are employed as the precursor.³⁷ The abundant hydroxyl (–OH) and amino (–NH₂) groups on the surface of the RNFs (Fig. S1†) enable effective adsorption of ferric ions (Fe³⁺). During carbonization at 800 °C, the ion species are partially reduced to Fe₃C and the remaining ions can be stabilized by N, forming FeN_x species. Meanwhile, the Fe₃C catalyzes the conversion of RNFs into partially graphitic CNFs. Thus, the product after secondary carbonization is denoted as FeN_x/Fe₃C-CNFs. With steam activation at 800 °C, the Fe species facilitate further graphitization, the amorphous carbon is etched away by steam, and the Fe₃C is oxidized to γ -Fe₂O₃. As a result, FeN_x/Fe₂O₃-CNFs are obtained.

The obtained RNFs exhibit a monolith morphology with ultralow density and can sit on a flower (Fig. 2a inset). SEM shows that the RNFs are composed of uniform nanofibers with a diameter of ~25 nm (Fig. 2a and S2†). After ferric ion adsorption, pyrolysis in N_2 , and steam activation, their average diameter is reduced to ~20 nm and the surface becomes rough (Fig. 2b). TEM (Fig. 2c and S3†) and high-resolution TEM (HRTEM, Fig. 2d and e) images clearly reveal the hollow

Fig. 1 Schematic illustration of the synthesis of FeN_x and γ -Fe₂O₃ nanoparticle co-functionalized hollow graphitic carbon nanofibers (FeN_x/Fe₂O₃-CNFs).

Fig. 2 The SEM image of resin nanofibers (a); SEM (b), TEM (c), and HRTEM (d and e) images of FeN_x/Fe_2O_3 -CNFs; the HAADF-STEM image of FeN_x/Fe_2O_3 -CNFs (f); EDS elemental maps of C, N, O, and Fe (g). The inset in (a) is the digital photo of the RNF monolith.

graphitic structure of FeN_x/Fe₂O₃-CNFs. The wall of the CNFs is composed of 8–14 graphitic layers with interlayer distances of 3.4 Å, corresponding to the (002) plane of graphitic carbon. γ -Fe₂O₃ nanoparticles can be clearly observed in the CNFs (Fig. 2d). The interplanar spacing (0.25 nm) observed in Fig. 2d agrees well with the (311) lattice spacing of γ -Fe₂O₃. Besides the γ -Fe₂O₃ nanoparticles, Fe species (both atomically dispersed Fe single atoms and few-atom clusters) can also be observed in other areas of the CNFs as shown in the high-angle annular dark-field scanning transmission electron microscopy image (HAADF-STEM, Fig. 2f). The Fe is also confirmed by energy dispersive X-ray spectroscopy (EDS) elemental mapping (Fig. 2g). As a single Fe-atom is unstable when exposed to air, it is speculated that the Fe species are stabilized by Ncoordination and exist as FeN_x . From the above characterization, we tentatively term the sample FeN_x and γ -Fe₂O₃ cofunctionalized hollow graphitic carbon nanofibers (FeN_x / Fe_2O_3 -CNFs).

For comparison, a sample without steam activation was also synthesized and characterized. It consists of FeN_x and Fe₃C cofunctionalized CNFs (FeN_x/Fe₃C-CNFs, Fig. S4†). Direct carbonization of the RNFs leads to amorphous N-doped CNFs (Fig. S5†). Different from FeN_x/Fe₂O₃-CNFs, neither FeN_x/Fe₃C-CNFs nor N-doped CNFs have a hollow tubular structure, demonstrating that steam activation plays a significant role in forming the hollow structure. To further explore the reason for the formation of the hollow graphitic structure, the steam activation temperature is varied from 700 to 900 °C. The hollow graphitic structure begins to form at 700 °C (Fig. S6†) although most CNFs remain amorphous at this temperature. Most of the CNFs can be converted into hollow graphitic CNFs at 800 °C and the hollow graphitic CNF morphology is partially destroyed at 900 °C (Fig. S7†).

The XRD (Fig. 3a) pattern of the FeN_x/Fe₂O₃-CNFs shows two typical diffractions for γ -Fe₂O₃ (JCPDS no. 39-1346) and two diffractions for graphitic carbon (JCPDS no. 26-1079). As for FeN_x/Fe₃C-CNFs, the XRD pattern shows two diffractions for graphitic carbon, while no diffraction for Fe₃C can be detected. The existence of Fe₃C nanocrystals in FeN_x/Fe₃C-CNFs can only be demonstrated using the HRTEM image (Fig. S4c†). The high graphitization degree of FeN_x/Fe₂O₃-CNFs can be confirmed with the Raman spectra (Fig. S8†). The FeN_x/Fe₂O₃-CNFs show a relatively low I_D/I_G ratio of 1.03, much lower than that of FeN_x/ Fe₃C-CNFs (1.15).

The surface area and porosity were studied by N₂ sorption (Fig. S9†). The BET surface area and pore volume of FeN_x/Fe_2O_3 -CNFs reach 712 m² g⁻¹ and 1.15 cm³ g⁻¹ (Table S1†),

Fig. 3 XRD patterns (a) of FeN_x/Fe₂O₃-CNFs and FeN_x/Fe₃C-CNFs; high-resolution N1s (b) and Fe2p (c) XPS spectra of the FeN_x/Fe₂O₃-CNFs; 57 Fe Mössbauer spectrum of the FeN_x/Fe₂O₃-CNFs (d); Fe K-edge XANES (e) and FT k^3 -weighted EXAFS spectra (f) of FeN_x/Fe₂O₃-CNFs, Fe foil and Fe₂O₃.

respectively. In addition, the *t*-Plot microporous surface area and pore volume of the $\text{FeN}_x/\text{Fe}_2\text{O}_3$ -CNFs are calculated to be 308 m² g⁻¹ and 0.16 cm³ g⁻¹, respectively. The (microporous) surface area and pore volume of $\text{FeN}_x/\text{Fe}_2\text{O}_3$ -CNFs are slightly higher than those of $\text{FeN}_x/\text{Fe}_3\text{C-CNFs}$. In electrocatalysis, the higher surface area can expose more active sites and thus contribute to the O₂ adsorption and reduction effectively.

The XPS survey spectrum of FeN_x/Fe₂O₃-CNFs shows an Fe content of 0.35 wt% (Fig. S10[†]). TGA (Fig. S11[†]) in air shows a weight loss of \sim 85 wt%, corresponding to an Fe content of 10.5 wt%. The Fe content determined by XPS is far below that measured by TGA. This is because most of the Fe species are encapsulated in graphitic carbon shells, making them difficult to detect using the XPS technique. The high-resolution N 1s spectrum (Fig. 3b) shows three types of N species: pyridinic-N or Fe-N_x species (398.2 eV), pyrrolic-N (400.6 eV), and graphitic-N (401.4 eV).7,38-40 Remarkably, the content of pyridinic-N reaches as high as 46.56%, which can effectively improve the activity of the catalyst and endow it with excellent surface wettability and onset potential, while the graphitic-N (16.43%) is beneficial for the improvement of diffusion-limited performance.41 The highresolution Fe 2p spectrum of FeN_r/Fe₂O₃-CNFs (Fig. 3c) can be deconvoluted into five components: the 2p_{3/2}-2p_{1/2} spin-orbit doublet for Fe²⁺ at 710.3 and 723.0 eV, the $2p_{3/2}$ - $2p_{1/2}$ spin-orbit doublet for Fe³⁺ at 713.2 and 725.0 eV, and the satellite peak at 717.2 eV. It should be noted that the peak at 710.3 eV can also be assigned to the FeN_x species owing to the slight difference in binding energy between FeN_x and pyridinic-N.^{42,43} The ⁵⁷Fe Mössbauer spectrum of FeN_x/Fe₂O₃-CNFs can be fitted into four components (Fig. 3d). The D1 and D2 doublets can be assigned to FeN_x species attributed to a low and medium spin state,

respectively,^{44,45} while the other two sextets are mainly from Fe²⁺ and Fe³⁺ species, suggesting the co-existence of FeN_x and γ -Fe₂O₃ in hollow graphitic CNFs. The FeN_x species, which are believed to be active sites for the ORR, account for 54.7% of the total Fe (Table S2[†]).

X-ray absorption spectroscopy was further conducted to analyze the atomic and electronic structure of Fe species in FeN_x/Fe₂O₃-CNFs. The Fe K-edge XANES (Fig. 3e) spectrum exhibits an absorption edge close to that of Fe₂O₃, suggesting the Fe^{3+} valence state of Fe species in FeN_x/Fe_2O_3 -CNFs. Besides, the appearance of a weak pre-edge peak at \sim 7117 eV suggests the existence of the FeN_x structure. The Fouriertransformed (FT) k^3 -weighted EXAFS (Fig. 3f) spectrum of FeN_x/Fe₂O₃-CNFs exhibits a strong peak for Fe-N/O bonds at \sim 1.5 Å. It should be noted that the bond distance between Fe–N and Fe-O is very small, and the peak of FeN_x/Fe₂O₃-CNFs is obviously wider than that of Fe_2O_3 at ~ 1.5 Å. In general, the XANES and EXAFS results are well consistent with the HAADF-STEM, XPS, and Mössbauer spectroscopy characterization results. All these characterizations demonstrate the existence of FeN_x in FeN_x/Fe_2O_3 -CNFs.

The obtained FeN_x/Fe₂O₃-CNFs were confirmed to have superb ORR properties due to their unique structure with a one dimensional (1D) nanostructure, high graphitization degree, high surface areas, and well-dispersed FeN_x species. The CV (Fig. S12†) curves of FeN_x/Fe₂O₃-CNFs and FeN_x/Fe₃C-CNFs show an oxygen reduction peak at 0.83 V (*vs.* RHE), more positive than that of N-doped CNFs (0.71 V). The LSV (Fig. 4a) curve of the FeN_x/Fe₂O₃-CNFs shows a half-wave potential ($E_{1/2}$) of 0.81 V. This $E_{1/2}$ is higher than those of N-doped CNFs (0.70 V) and FeN_x/Fe₃C-CNFs (0.79 V), and is only 17 mV lower than that CNFs FeN₂/Fe₂O₃-CNFs

0.4 0.5 0.6 0.7 0.8 Potential (V vs. RHE)

0.3 0.4 0.5 Potential (V vs. RHE)

CNFs in O₂-saturated 0.1 M KOH (1600 rpm at 10 mV s⁻¹) (a); LSV curves of FeN_x/Fe₂O₃-CNFs at rotation rates from 400 to 1600 rpm (inset: the corresponding K-L plots) (b); electron transfer number and H_2O_2 yields of FeN_x/Fe₂O₃-CNFs at 0.2-0.7 V (c); stability tests of FeN_x/Fe₂O₃-CNFs and Pt/C at 0.75 V (d).

b)

cm⁻²) 1 (mA⁻ cm⁵)

W -1

Density (

Ľ

(%)

Relative Current

d)

H,0,1%

- 6.5V 6.6V 6.6V - 6.5V

0.4 0.5 0.6 0.7 0.8 Potential (V vs. RHE)

15000

Time (s)

0.9

87.14%

58.32%

Pt/C
 FeN_/Fe₂O₃-CNFs

20000 25000 30000

of commercial 20 wt% Pt/C. In addition, the FeN_x/Fe₂O₃-CNFs show the highest limiting current density $(I_{\text{limit}} = \sim 6 \text{ mA cm}^{-2})$ among all the catalysts, which is close to the theoretical value at 1600 rpm and suggests rapid mass-transfer kinetics. In the kinetic control region (0.9 V), the J_k of FeN_x/Fe₂O₃-CNFs reaches 0.50 mA cm⁻², which is close to that of Pt/C. The effects of activation temperature on ORR performance have been evaluated by varying the activation temperature from 700 to 900 °C. Both the CV and LSV results demonstrate that the sample activated at 800 °C outperforms that prepared at 700 and 900 °C (Fig. S13[†]). Although the sample prepared at 900 °C shows the highest surface area, the hollow graphitic CNF structure is partially destroyed owing to over activation, leading to a decrease in catalytic performance.

To investigate the electron transfer number (n) during the ORR, LSV curves at various rotation rates were recorded (Fig. 4b). Due to the decreased diffusion distance at high rotation speeds, the Ilimit increases proportionally with the rotation speed. The K-L plots show perfect linearity at various potentials. The *n* is determined to be ~ 4 for FeN_x/Fe₂O₃-CNFs, demonstrating a direct 4-electron reduction ORR pathway. The peroxide species yields and corresponding n of FeN_r/Fe_2O_3 -CNFs were also determined by RRDE tests. The H₂O₂ yields of FeN_x/Fe₂O₃-CNFs remain below 6% in the potential range of 0.2-0.7 V (Fig. 4c), confirming a direct 4-electron transfer pathway for the ORR. When compared to FeN_x/Fe₃C-CNFs, the FeN_x/Fe₂O₃-CNFs exhibit lower H₂O₂ yields and a higher electron transfer number (Fig. S14[†]). Thus, the high ORR activity of FeN_x/Fe₂O₃-CNFs is proved by the 4-electron reduction of oxygen and the very low H_2O_2 yields. The obtained FeN_x/Fe_2O_3 -CNF catalyst also demonstrates outstanding methanol tolerance performance (Fig. S15[†]). With the addition of methanol, the LSV curve of FeN_x/Fe₂O₃-CNFs presents no obvious change, while the LSV curve of Pt/C shows a sharp deformation. Longterm stability is another key parameter for ORR catalysts.

During the stability test (30 000 seconds), the FeN_x/Fe₂O₃-CNFs show a slight current loss of 12.86% (Fig. 4d). Under the same conditions, the commercial Pt/C loses 41.68% of its activity.

Considering the complexity of the catalyst, an SCN⁻ poisoning experiment was performed to block the Fe-N_r species. After injecting KSCN, the ORR activity of FeN_x/Fe₂O₃-CNFs was significantly degraded, demonstrating the active role of Fe– N_r in the ORR (Fig. S16[†]). This is well consistent with previous reports which showed that Fe-Nx species were the active sites of Fe-N-C catalysts for the ORR.29,46-50 In fact, a recent study by Wan et al. demonstrated that the Fe/Fe₃C could boost the ORR activity of Fe-Nx.34 In the present study, the Fe₃C nanoparticles are converted into γ-Fe₂O₃ nanocrystals via a facile steam treatment. And we found that the γ -Fe₂O₃ nanocrystals can also act as a co-catalyst for the ORR and are even more effective than Fe_3C in boosting the activity of $Fe-N_x$. Although the origin of enhanced ORR activity is not clear at this stage, it is speculated that there may exist certain interactions between the Fe_2O_3 nanocrystals and neighboring FeN_x , say alteration of the Fe's charge density. Further studies, such as density functional theory calculations, will be performed in the future to help us understand the role of Fe₂O₃ in the Fe-N-C catalyst in the ORR in detail.

Inspired by the excellent ORR performance, aqueous Zn-air batteries were assembled based on the FeNr/Fe2O3-CNF catalyst using 6.0 M KOH as the electrolyte. As shown in Fig. 5a, the open circuit voltage (OCV) of the Zn-air battery based on FeN_x/ Fe₂O₃-CNFs reaches 1.51 V, which is slightly higher than that of the battery based on the commercial Pt/C catalyst (1.48 V). The constructed devices also show good OCV stability after 1800 s. From the discharge polarization curve (Fig. 5b), the maximum current density and power density of the FeN_x/Fe₂O₃-CNF based battery are calculated to be 152.87 mA cm^{-2} and 69.42 mW cm⁻², respectively. Both values are higher than those of the battery based on the Pt/C catalyst. In addition, the Zn-air

Fig. 5 Zn-air battery performances based on FeN_x/Fe₂O₃-CNFs and Pt/C catalysts. OCV stability (a); the insets show digital photos of the OCV; discharge polarization and corresponding power density curves (b); discharge curves at 10 mA cm $^{-2}$ (c); rate performance at different current densities (d); the inset shows a digital photo of 60 LEDs powered by two aqueous Zn-air batteries in series.

a)

cm⁻²)

Am

Density -3

Current

3.0

2.5

2.0 5

1.5

1.0

0.5

C)

View Article Online Journal of Materials Chemistry A

battery also exhibits a stable discharge curve with a voltage platform of \sim 1.21 V. At a current density of 10 mA cm⁻², the discharge capacity normalized to consumed Zn is up to 761 mA h g^{-1} , corresponding to an energy density of 920 W h kg⁻¹ (Fig. 5c). Although the average discharge voltage of the Pt/C based Zn-air battery reaches ~1.23 V, its specific capacity (744 mA h g⁻¹) and energy density (915 W h kg⁻¹) are slightly lower. Moreover, the rate performance of the Zn-air battery was tested at current densities of 2-10 mA cm⁻² (Fig. 5d). The Zn-air battery shows a very stable discharge voltage platform, and the discharge voltage decreases slowly with the increase of current density. When the current density returns to 2 mA cm^{-2} , the voltage platform can return to the initial level. It is worth mentioning that Zn-air batteries in series can successfully light up 60 LEDs, indicating the excellent practical application potential.

Conclusions

In summary, we have constructed a highly efficient ORR catalyst consisting of FeN_x single-atom and γ -Fe₂O₃ nanocrystal cofunctionalized hollow graphitic carbon nanofibers (FeN_x/ Fe₂O₃-CNFs). Featuring FeN_x active sites, γ -Fe₂O₃ nanocrystals as the co-catalyst, and a 1D hollow graphitic CNF structure, the resultant FeN_x/Fe₂O₃-CNFs show superior ORR activity in terms of the 4-electron transfer pathway and low hydrogen peroxide yields. Besides, the high limiting current density, long-term stability, and excellent methanol tolerance of FeN_x/Fe₂O₃-CNFs are also competitive among those of previously reported M–N–C electrocatalysts. The assembled Zn–air battery based on FeN_x/Fe₂O₃-CNFs exhibits a high open circuit voltage, power density, and energy density. The present research highlights the important role of the co-catalyst in electrocatalysts.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21673171), the Programme of Introducing Talents of Discipline to Universities (B17034), and the National Natural Science Fund for Distinguished Young Scholars (51425204).

References

- X. L. Tian, X. Zhao, Y. Q. Su, L. J. Wang, H. M. Wang, D. Dang,
 B. Chi, H. F. Liu, E. Hensen, X. W. Lou and B. Y. Xia, *Science*, 2019, 366, 850–856.
- 2 F. Cheng and J. Chen, Chem. Soc. Rev., 2012, 41, 2172.
- 3 J. Zhang, K. Sasaki, E. Sutter and R. R. Adzic, *Science*, 2007, 315, 220–222.
- 4 J. T. Zhang, Z. H. Zhao, Z. H. Xia and L. M. Dai, *Nat. Nanotechnol.*, 2015, **10**, 444-452.

- 5 Y. H. Bing, H. S. Liu, L. Zhang, D. Ghosh and J. J. Zhang, *Chem. Soc. Rev.*, 2010, **39**, 2184–2202.
- 6 J. Liang, R. F. Zhou, X. M. Chen, Y. H. Tang and S. Z. Qiao, *Adv. Mater.*, 2014, **26**, 6074–6079.
- 7 H. W. Liang, W. Wei, Z. S. Wu, X. Feng and K. Mullen, *J. Am. Chem. Soc.*, 2013, **135**, 16002–16005.
- 8 M. R. Benzigar, S. N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahilyc and A. Vinu, *Chem. Soc. Rev.*, 2018, **47**, 2680–2721.
- 9 J. C. Li, P. X. Hou, S. Y. Zhao, C. Liu, D. M. Tang, M. Cheng, F. Zhang and H. M. Cheng, *Energy Environ. Sci.*, 2016, 9, 3079–3084.
- 10 F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J. P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston and P. Zelenay, *Energy Environ. Sci.*, 2011, 4, 114–130.
- 11 C. Guan, A. Sumboja, W. J. Zang, Y. H. Qian, H. Zhang, X. M. Liu, Z. L. Liu, D. Zhao, S. J. Pennycook and J. Wang, *Energy Storage Materials*, 2019, **16**, 243–250.
- 12 Y. Y. Xu, P. L. Deng, G. D. Chen, J. X. Chen, Y. Yan, K. Qi, H. F. Liu and B. Y. Xia, *Adv. Funct. Mater.*, 2019, 1906081.
- 13 G. Saianand, A.-I. Gopalan, J.-C. Lee, C. I. Sathish,
 K. Gopalakrishnan, G. E. Unni, D. Shanbhag,
 V. D. B. C. Dasireddy, J. Yi, S. B. Xi, A. Al-Muhtaseb and
 A. Vinu, *Small*, 2019, 1903937.
- 14 B. Y. Guan, L. Yu and X. W. Lou, Adv. Sci., 2017, 4, 1700247.
- 15 R. Jasinski, Nature, 1964, 201, 1212-1213.
- 16 P. Neta, J. Phys. Chem., 1981, 85, 3678-3684.
- 17 S. Gupta, D. Tryk, I. Bae, W. Aldred and E. Yeager, *J. Appl. Electrochem.*, 1989, **19**, 19–27.
- 18 W. Gang, K. L. More, C. M. Johnston and Z. Piotr, *Science*, 2011, 332, 443–447.
- 19 B. Y. Guan, Y. Lu, Y. Wang, M. H. Wu and X. W. Lou, Adv. Funct. Mater., 2018, 28, 1706738.
- 20 R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen and L. Wang, J. Am. Chem. Soc., 2018, 140, 11594–11598.
- 21 Z. Qiao, S. Hwang, X. Li, C. Wang, W. Samarakoon, S. Karakalos, D. Li, M. Chen, Y. He, M. Wang, Z. Liu, G. Wang, H. Zhou, Z. Feng, D. Su, J. S. Spendelow and G. Wu, *Energy Environ. Sci.*, 2019, **12**, 2830–2841.
- 22 K. L. Ai, Y. L. Liu, C. P. Ruan, L. H. Lu and G. Q. Lu, *Adv. Mater.*, 2013, **25**, 998–1003.
- 23 D. H. Deng, L. Yu, X. Q. Chen, G. X. Wang, L. Jin, X. L. Pan, J. Deng, G. Q. Sun and X. H. Bao, *Angew. Chem., Int. Ed.*, 2013, 52, 371–375.
- 24 Q. Wang, Z. Y. Zhou, Y. J. Lai, Y. You, J. G. Liu, X. L. Wu,
 E. Terefe, C. Chen, L. Song, M. Rauf, N. Tian and
 S. G. Sun, *J. Am. Chem. Soc.*, 2014, 136, 10882–10885.
- 25 M. Q. Wang, W. H. Yang, H. H. Wang, C. Chen, Z. Y. Zhou and S. G. Sun, *ACS Catal.*, 2014, 4, 3928–3936.
- 26 Y. Hu, J. O. Jensen, W. Zhang, N. C. Lars, W. Xing, J. B. Niels and Q. F. Li, *Angew. Chem., Int. Ed.*, 2014, **126**, 3749–3753.
- 27 W. X. Yang, X. J. Liu, X. Y. Yue, J. B. Jia and S. J. Guo, *J. Am. Chem. Soc.*, 2015, **137**, 1436.
- 28 F. L. Meng, Z. L. Wang, H. X. Zhong, J. Wang, J. M. Yan and X. B. Zhang, *Adv. Mater.*, 2016, 28, 7948–7955.
- 29 Z. Huang, H. Pan, W. Yang, H. Zhou, N. Gao, C. Fu, S. Li, H. Li and Y. Kuang, *ACS Nano*, 2018, **12**, 208–216.

- 30 B. C. Hu, Z. Y. Wu, S. Q. Chu, H. W. Zhu, H. W. Liang, J. Zhang and S. H. Yu, *Energy Environ. Sci.*, 2018, **11**, 2208– 2215.
- 31 S. H. Wang, X. Yan, K. H. Wu, X. Chen, J. M. Feng, P. Y. Lu,
 H. Feng, H. M. Cheng, J. Liang and S. X. Dou, *Carbon*, 2019, 144, 798–804.
- 32 Y. Zhu, B. Zhang, X. Liu, D. W. Wang and D. S. Su, Angew. Chem., Int. Ed., 2014, **126**, 10849–10853.
- 33 A. Zitolo, V. Goellner, V. Armel, M. T. Sougrati, T. Mineva, L. Stievano, E. Fonda and F. Jaouen, *Nat. Mater.*, 2015, 14, 937.
- 34 W. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L. Zhang, J. Wang, J. Hu, Z. Wei and L. Wan, *J. Am. Chem. Soc.*, 2016, **138**, 3570.
- 35 E. F. Holby, G. Wu, P. Zelenay and C. D. Taylor, *J. Phys. Chem. C*, 2014, **118**, 14388–14393.
- 36 H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang and H. Sun, *Nat. Catal.*, 2018, 1, 63–72.
- 37 Q. Yu, J. Lv, Z. Liu, M. Xu, W. Yang, K. A. Owusu, L. Mai,
 D. Zhao and L. Zhou, *Sci. Bull.*, 2019, 64, 1617–1624.
- 38 C. Zhu, S. Fu, J. Song, Q. Shi, D. Su, M. H. Engelhard, X. Li, D. Xiao, D. Li, L. Estevez, D. Du and Y. Lin, *Small*, 2017, 13, 1603407.
- 39 Z. Y. Yang, Y. X. Zhang, L. Jing, Y. F. Zhao, Y. M. Yan and K. N. Sun, *J. Mater. Chem. A*, 2014, **2**, 2623.

- 40 L. Lin, Q. Zhu and A. W. Xu, J. Am. Chem. Soc., 2014, 136, 11027-11033.
- 41 I. S. Amiinu, X. B. Liu, Z. H. Pu, W. Q. Li, Q. D. Li, J. Zhang,
 H. L. Tang, H. N. Zhang and S. C. Mu, *Adv. Funct. Mater.*,
 2018, 28, 1704638.
- 42 Z. Y. Wu, X. X. Xu, B. C. Hu, H. W. Liang, Y. Lin, L. F. Chen and S. H. Yu, *Angew. Chem., Int. Ed.*, 2015, 46, 8179–8183.
- 43 F. Li, H. Li, X. Liu, L. Wang, Y. Lu and X. Hu, *Chem.–Eur. J.*, 2019, **25**, 635–641.
- 44 Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu, J. Zhou, H. Li, H. Xia, J. He and Q. Xu, *Adv. Mater.*, 2018, **30**, 1804504.
- 45 U. I. Kramm, M. Lefevre, N. Larouche, D. Schmeisser and J. P. Dodelet, *J. Am. Chem. Soc.*, 2014, **136**, 978–985.
- 46 K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X. Zhuang, Y. Chen, C. Yuan, X. Feng and U. Scherf, ACS Energy Lett., 2017, 3, 252–260.
- 47 H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu, T. Chen, Z. Wang, J. Wang, Y. Ide, Y. Bando and Y. Yamauchi, *ACS Nano*, 2018, **12**, 5674–5683.
- 48 W. Gu, M. Wu, J. Sun, J. Xu and T. Zhao, *J. Mater. Chem. A*, 2019, 7, 20132–20138.
- 49 L. Tong, Z. Shao, Y. Qian and W. Li, *J. Mater. Chem. A*, 2017, 5, 3832–3838.
- 50 D. S. Xia, X. Yang, L. Xie, Y. P. Wei, W. L. Jiang, M. Dou, X. N. Li, J. Li, L. Gan and F. Y. Kang, *Adv. Funct. Mater.*, 2019, 1906174.