Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Small Micro

Supporting Information

for Small, DOI: 10.1002/smll.202000293

Wearable Textile-Based Co-Zn Alkaline Microbattery with High Energy Density and Excellent Reliability

Yao Wang, Xufeng Hong, Yaqing Guo, Yunlong Zhao, Xiaobin Liao, Xiong Liu, Qi Li, Liang He,* and Liqiang Mai*

Supporting Information

Wearable Textile-based Co-Zn Alkaline Microbattery with High Energy Density and Excellent Reliability

Yao Wang, Xufeng Hong, Yaqing Guo, Yunlong Zhao, Xiaobin Liao, Xiong Liu, Qi Li, Liang He* and Liqiang Mai*

Figure S1. Digital photograph of a piece of conducive NT showing a low resistance.

Figure S2. Patterns and dimensions of Co-Zn microbattery.

Figure S3. SEM images of a) pristine textiles and b) NC-LDH@NT.

Figure S4. a) XRD patterns of NT, CH@NT, NC-LDH@NT, and CH@NC-LDH@NT. b) Raman spectra of CH@NT, NC-LDH@NT, and CH@NC-LDH@NT. c) XPS survey scan spectra, d) high-resolution Ni 2p spectra, e) high-resolution Co 2p spectra, and f) high-resolution O 1s spectra of CH@NC-LDH@NT.

Figure S5. a) XPS survey scan spectra, b) high-resolution Ni 2p spectra, and c) high-resolution Co 2p spectra of NT, CH@NT, NC-LDH@NT and CH@NC-LDH@NT.

Figure S6. The linear fitting chart of log(v) and log(i) of anodic peak and cathodic peak.

Figure S7. SEM images of CH@NC-LDH@NT after 2000 cycles.

Figure S8. a-c) SEM images, and d) XRD pattern of Zn@CC.

Figure S9. Structure and mechanical performance of the Co-Zn alkaline microbattery. a) Optical photograph of the assembled microbattery. Scale bar: 5 mm. b-d) Optical micrographs of internal structure of the microbattery. Scale bar: 0.5 mm. Optical photographs of a microbattery with e) original, f) lateral bending, g) vertical bending, and h) attached on skin. Scale bar: 1 cm.

Figure S10. a) GCD curves of Co-Zn microbattery under different bending angles. Bending angle $\theta = 0.180^{\circ}$, bending radius R = 10 mm, device length L = 30 mm. b) Capacity retention of Co-Zn microbattery after 200 times of bending tests. Bending angle $\theta = 90^{\circ}$.

Figure S11. a) Rate performance and b) Nyquist plot of Co-Zn microbattery.

Figure S12. SEM images of a) CH@NC-LDH@NT, and b,c) Zn@CC after cycling.

Figure S14. Calculated electric field distribution of a) conventional configuration and b) trench-type configuration.

Figure S15. Photograph of three Co-Zn microbatteries connected in series for lighting an LED scroller of "WUT" log.

 Table S1. Comparison of areal energy/power densities of our Co-Zn alkaline microbattery with

 most reported energy storage devices.

Energy storage devices	Power density (mW cm ⁻²)	Energy density (mWh cm ⁻²)	Reference
CH@NC-LDH	14.4	0.1736	This work
@NT//Zn@CC			
rGO//rGO	2.51	0.00051	Ref. S1
rGO-Ni//rGO-Ni	1.86	0.00158	Ref. S2
CNT//Zn	7.8	0.028	Ref. S3
Ni-NiO//Zn	20.2	0.0066	Ref. S4
PEDOT:PSS//PEDOT:PSS	3.52	0.041	Ref. S5
MnO ₂ /CNT//MnO ₂ /CNT	0.51	0.02107	Ref. S6
AC//Zn	3.9	0.1154	Ref. S7
MnO ₂ /CNT//V ₂ O ₅ /CNT	0.63	0.00088	Ref. S8
Cu(OH) ₂ @FeOOH/Cu	0.73	0.01807	Ref. S9

Table S2. Comparison of volume energy/power densities of our Co-Zn alkaline microbatterywith most reported energy storage devices.

Energy storage devices	Power density (mW cm ⁻³)	Energy density (mWh cm ⁻³)	Reference
CH@NC-LDH@NT//Zn@CC	599.9	7.23	This work
Ni-NiO//Zn	220	0.67	Ref. S4
Graphene//graphene	297	1.81	Ref. S10
CoMoO ₄ //C-ZnO	420	4.6	Ref. S11
NiO//C-ZnO	210	7.76	Ref. S12
Ni(OH)2@Ni//Zn@Ni	425	4.05	Ref. S13
4V/500 μAh Li thin-film battery	5.4	7.4	Ref. S14
PEDOT//PEDOT	1000	1	Ref. S15
NiO//Fe ₃ O ₄	640	5.2	Ref. S16
NiMoO ₄ //Fe ₂ O ₃	330.62	0.68	Ref. S17

Supporting Information Reference

- X. Pu, M. Liu, L. Li, S. Han, X. Li, C. Jiang, C. Du, J. Luo, W. Hu, Z. L. Wang, *Adv. Energy Mater.* 2016, 6, 1601254.
- [2] X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z. L. Wang, *Adv. Mater.* 2016, 28, 98.
- [3] G. Sun, H. Yang, G. Zhang, J. Gao, X. Jin, Y. Zhao, L. Jiang, L. Qu, *Energy Environ*. *Sci.* 2018, 11, 3367.
- Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu, P. Fang, M. Wu, Y. Tong, X. Lu, Adv.
 Mater. 2017, 29, 1702698.
- [5] Z. Wang, J. Cheng, Q. Guan, H. Huang, Y. Li, J. Zhou, W. Ni, B. Wang, S. He, H. Peng, *Nano Energy* 2018, 45, 210.
- [6] Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, W. Li, Y. Zeng, W. Zhang, Y. Zhang,
 D. Qi, S. Pan, X. J. Loh, X. Chen, *Adv. Mater.* 2018, 30, 1704531.
- P. Zhang, Y. Li, G. Wang, F. Wang, S. Yang, F. Zhu, X. Zhuang, O. G. Schmidt, X.
 Feng, *Adv. Mater.* 2018, 31, 1806005.
- [8] J. Yun, Y. Lim, H. Lee, G. Lee, H. Park, S. Y. Hong, S. W. Jin, Y. H. Lee, S. S. Lee, J.
 S. Ha, *Adv. Funct. Mater.* 2017, 27, 1700135.
- [9] J. Q. Xie, Y. Q. Ji, J. H. Kang, J. L. Sheng, D. S. Mao, X. Z. Fu, R. Sun, C. P. Wong, *Energy Environ. Sci.* 2019, 12, 194.
- [10] X. Shi, S. Pei, F. Zhou, W. Ren, H. M. Cheng, Z. S. Wu, X. Bao, *Energy Environ. Sci.* **2019**, 12, 1534.
- [11] M. Li, J. Meng, Q. Li, M. Huang, X. Liu, K. A. Owusu, Z. Liu, L. Mai, *Adv. Funct. Mater.* 2018, 28, 1802016.
- [12] J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke, G. Zhang, C. Liu, J. Wang, *Adv. Mater.* 2016, 28, 8732.

- [13] C. Xu, J. Liao, C. Yang, R. Wang, D. Wu, P. Zou, Z. Lin, B. Li, F. Kang, C. P. Wong, *Nano Energy* 2016, 30, 900.
- [14] M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, *Science* 2012, 335, 1326.
- [15] B. Anothumakkool, R. Soni, S. N. Bhange, S. Kurungot, *Energy Environ. Sci.* 2015, 8, 1339.
- [16] C. Guan, W. Zhao, Y. Hu, Q. Ke, X. Li, H. Zhang, J. Wang, Adv. Energy Mater. 2016, 6, 1601034.
- [17] K. A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K. M. Hercule, C. Lin, C. Shi, Q.
 Wei, L. Zhou, L. Mai, *Nat. Commun.* 2017, 8, 14264.