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As one of the most important micro energy storage devices (MESDs), graphene-based micro-super-
capacitors (G-MSCs) possess the advantages of excellent flexibility, long cycle life, affordability and high
reliability. In most cases, constructing three-dimensional (3D) graphene networks is widely utilized to
promote the permeation of electrolyte and enhance the utilization of active materials. In this work,
conventional freeze-drying process is utilized in the fabrication of G-MSCs to constitute 3D inter-
connected networks micro-electrodes, and further by regulating the composition of inks, carbon spheres
(CSs) at different mass loadings are introduced into the graphene scaffolds to further increase the active
sites of the micro-electrodes. The fabricated all carbon-based MSC with the optimal mass loading of CSs
(0.406 mg cm~2) exhibits a high specific areal capacitance of 17.01 mF cm 2 at the scan rate of 10mV s~
and a capacitance retention of 93.14% after 10000 cycles at the scan rate of 500 mV s~ . The proposed
microfabrication process is facile and fully compatible with modern microtechnologies and will be highly
suitable for large-scale production and integration.

© 2018 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The development of portable, wearable and implantable elec-
tronic equipments has generated an immense demand for micro
energy storage devices (MESDs) with light weight and high effi-
ciency, which are essential for future energy component in micro/
nanorobotics and microelectromechanical systems (MEMSs) [1—8].
Among MESDs, micro-supercapacitors (MSCs) own longer cycle life,
higher power density and preferable safety compared with thin-
film batteries and micro-batteries, showing great potential in en-
ergy storage [1,6]. The traditional processes for fabricating MSCs
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include laser scribing [3,9—11], chemical vapor deposition (CVD)
[12], electrochemical deposition [13,14], ink-jet printing [15—17],
three-dimensional (3D) printing [18,19], injecting [20,21], carbide
pyrolysis [22,23] etc. Among which, liquid-based processes
including ink-jet printing and injecting have drawn extensive at-
tentions recently since they are easy to be conducted and have the
access to large-scale production.

As one of the most significant two-dimensional (2D) carbon
materials, graphene has been widely applied in carbon-based MSCs
(C-MSCs) due to its excellent electrical conductivity, high stability,
high surface area and lack of solid-state diffusion [24—28].
Benefiting from its superb dispersibility, graphene-based materials
have been widely studied in ink-jet printing [15,16] and injecting
[20] processes with the aim of making graphene into special inks to
facilitate the micro-patterning of electrode materials [29—31]. For
example, Hyun et al. mixed graphene/ethyl cellulose stabilizer into
a solvent system of cyclohexanone/terpineol/di (ethylene glycol)
methyl ether by bath sonication [20]. Liu et al. dispersed
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electrochemically exfoliated graphite/PEDOT into isopropanol (IPA)
to prepare stable graphene-based inks [16]. However, the restack-
ing of graphene after natural drying immensely limits the perme-
ation of electrolyte ions, leading to a low loading utilization [28].
Although some efforts are focusing on constructing graphene-
based electrodes with unique structure [32—36], relevant tech-
niques of configuring 3D micro-electrodes for ink-derived MSC are
still rarely reported.

In this work, graphene oxide (GO) aqueous dispersion is utilized
to prepare graphene-based inks, which makes it possible to
conduct freeze-drying process based on ice molding mechanism
[19,37] and construct 3D conductive graphene-based networks.
After freeze-drying, the reduced GO (rGO)-based micro-electrode is
transformed from 2D (specific capacitance: 0.26 mF cm~2) into 3D
(specific capacitance: 117 mFcm™2). The latter one exhibits a
higher specific mass capacitance (187.2Fg~!) compared with 2D
micro-electrode (41.6 Fg~1), which declares the deeper permeation
of electrolyte ions benefiting from the 3D structure of the micro-
electrode. In addition, due to the excellent solvent property of GO
aqueous dispersion [38], carbon spheres (CSs) are easy to be
introduced into the inks to further increase the active sites of the
final micro-electrodes. By simply regulating the concentration of
CSs in the pristine inks, the mass loadings of CSs in micro-elec-
trodes are amenable to be controlled. Finally, MSCs with different
mass loadings of CSs were fabricated, demonstrating that MSC with
the highest mass loading of CSs (0.406 mgcm™2) possesses the
highest specific areal capacitance (17.01 mFcm~2). The environ-
mentally friendly deionized (DI) water is employed as solvent of
this kind of inks, which can benefit the formation of 3D networks
by freeze-drying process to increase the surface area of the micro-
electrodes and facilitate the permeation of electrolyte ions. Our
work proposes a promising approach for improving electro-
chemical performance of MSCs derived from graphene-based inks.
In addition, benefiting from the highly controllable process, it is
amenable to achieve automatic large-scale production, and by
rationally designing the mask, high integration can be achieved.

2. Experimental
2.1. Preparation of GO/CSs dispersion

The CSs were synthesized according to a previous work [39]. 3-
aminophenol (0.50 g) and HMTA (CgH12N4) (2.56 g) were dissolved
in 20 mL DI water and stirred for 30 min to obtain a clarified so-
lution. Then, the solution was reserved in a water bath at 85 °C with
stirring for 24 h. Afterwards, centrifugation was conducted to
separate the particles followed by washing with DI water for 4
times and then vacuum dried at 80 °C overnight. After the particles
were carbonized at 800 °C for 5h under a flowing gas of H,O/N;
(heating rate: 2 °C min~!), the CSs with uniform diameter were
finally obtained. To fabricate micro-electrodes with different mass
loadings of CSs, the inks with different ratios of GO/CSs were pre-
pared in advance. Firstly, 9, 18 and 27 mg CSs were respectively
added into 1mL GO dispersion (3mgmL~!) (see Supporting
Information for preparation details) to obtain different mass ra-
tios of GO/CSs (1:3, 1:6, 1:9). The mixtures were then treated by
ultrasonication and continuous stirring for 10 min and repeated for
4 times to disperse the CSs and a uniform dispersion was obtained.

2.2. Preparation of Au/SU-8 mold

Firstly, a 500 pm thick silicon wafer (with 500 nm thick SiO;
layer) was cut into pieces (1.2cm x 1.5cm), which were then
washed by IPA for 15 min and treated by O, plasma to make the
surface hydrophilic and attachable. Then, a layer of PR1-9000A

photoresist was spin-coated (speed: 4000rpm, 6—7 um thick
layer) on Si/SiO, substrate and micropatterned by photolithography
(detailed size is shown in Fig. S1, the total area is 0.097 cm?). Af-
terwards, Cr/Au layers (5/100 nm) were deposited on the sample by
physical vapor deposition (PVD), followed by lift-off process
employing acetone. After O, plasma treatment, a fine micro-
patterned interdigital Au current collector was obtained, which is
shown in Fig. 1a. To obtain the Au/SU-8 mold, SU-8 50 photoresist
was spin-coated (speed: 1000 rpm, about 180 um thick) on the
surface of Au current collector, followed by aligned photolithog-
raphy to construct 180 um width SU-8 walls and Au/SU-8 molds
were finally obtained (Fig. 1b).

2.3. Microfabrication of rGO/CSs-MSCs

The Au/SU-8 molds were then treated by O, plasma (150 W,
5 min) to make the surface hydrophilic and inks with different mass
ratios of GO/CSs (1:3, 1:6, 1:9) were injected into the molds (1.8 uL
ink for each micro-electrode). It should be emphasized that the ink
with higher CSs concentration (more than 27 mg mL™!) is difficult
to be injected into the molds. Rapidly, the sample was transferred
into the refrigerator (—40 °C) to freeze the dispersion in seconds in
order to avoid the evaporation. After gelation, the sample was
transferred into a special equipment (surrounded by ice cube to
maintain low temperature) to ensure the effect of freeze-drying.
After freeze-drying for 3 days, GO/CSs based micropatterns with
3D structure were obtained. Afterwards, the samples were
annealed at 300 °C for 1h (heating rate: 1 °C min~!), as the SU-8
structure is still stable (insulated) and GO was transformed into
rGO, after coated by H,SO4-PVA electrolyte, rGO/CSs-MSCs (deno-
ted as rGO1/CSs3-MSC, 1rGO1/CSsg-MSC and r1rGO1/CSsg-MSC,
respectively) were finally fabricated. In order to probe the effects of
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Fig. 1. Schematic illustration of a-d) the microfabrication process of rGO/CSs-MSC, e)
cross section of the micro-electrode and f) electrons/ions transport mechanism.
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freeze-drying process and contribution of CSs, 3D-rGO-MSC (pure
graphene after freeze-drying) and 2D-rGO-MSC (pure graphene
after natural drying) were also fabricated.

2.4. Characterizations of the MSCs

The contact angles were measured by a microscopic contact
angle meter (JC2000C, Powereach). The morphologies were
observed by field-emission scanning electron microscopy (SEM,
JEOL-7100F) and transmission electron microscopy (TEM, Titan G2
60-300 Probe Cs Corrector HRSTEM). The surface composition was
investigated by X-ray photoelectron spectroscopy (XPS, VG Multi-
lab 2000). Raman spectrum was recorded using a LabRAM HR
Evolution & Smart SPM. The nitrogen adsorption-desorption iso-
therms were measured by Tristar-3020 instrument at 77 K. The
electrochemical tests (utilizing two electrodes system) were con-
ducted by an Autolab (PGSTAT302N).

2.5. Electrochemical measurements

All of the electrochemical measurements were conducted using
a two-electrodes system employing H,SO4-PVA electrolyte. The
electrochemical calculation was according to the previous work
[40]. The cyclic voltammetry (CV) tests and galvanostatic charge-
discharge (GCD) tests were delivered at the potential window
from O to 1V and electrochemical impedance spectroscopy (EIS)
tests were conducted at the frequency from 0.01 to 500000 Hz. The
specific areal capacitance was calculated from the CV curves, ac-
cording to the following equation:

I(V)dU
Carea = m (1 )

in which [I(V)dU is the mathematic area of the CV curves, and s (V
s~1) refers to the scan rate. U (V) is the potential window. To
calculate energy density and power density, the following equa-
tions were used:

C x U2
Egreqa = W;HW (2)
Parea — 2270 . 3600 (3)
At

where Cyreq (MF cm™2) is the specific areal capacitance, and U (V) is
the potential window. 4t (s) is the discharge time. The internal
resistance was calculated from the IR drop according to the
following equation:

a4V

R:2><I><A (4)

in which 4V (V) is the drop potential during the GCD tests, and [
(mA cm~2) is the current density utilized in the GCD tests. A (cm?) is
the area of the micro-electrodes. The coulombic efficiency was
calculated using the following equation:

_I

=0 (5)

where Tp (s) and T¢ (s) represent the discharge time and charge
time, respectively.

3. Results and discussion
3.1. Microfabrication process of MSCs

The CSs were synthesized by previously reported method [39].
The SEM images of the CSs before and after carbonization are
shown in Fig. S2. After carbonization, the volume of CSs shrinks by
~10% and the CSs exhibit average diameter around 1pm. To
investigate the effect of H,O activation during annealing, the
nitrogen-adsorption-desorption measurements for CSs annealed in
N>/H20 and N, were conducted, shown in Fig. S3. The CSs with H,O
activation exhibit an improved BET surface area from 287.7 to
478.9m? gL These two samples both have relatively centralized
pore size distribution ranging from 1.8 to 3.8 nm, shown in Figs. S3b
and d. For the preparation of homogenous GO/CSs-based inks, CSs
were added into 3 mg mL~! GO dispersion to obtain GO/CSs-based
inks with different concentrations of CSs. The mass ratios of GO/CSs
were controlled to be 1:3, 1:6 and 1:9, therefor the concentrations
of CSs were determined to be 9, 18 and 27 mg mL™". After sufficient
stirring and sonication, the CSs were uniformly dispersed into the
GO suspension and stable inks were obtained (Fig. S4).

The Au/SU-8 molds were fabricated using photolithography, as
shown in Fig. 1a, b. Firstly, the micro-patterning of PR1-9000A
photoresist (Futurrex, Inc. Co., Ltd) was conducted on a Si/SiO;
wafer by photolithography, followed by Au deposition using PVD.
After the lift-off process by acetone, Au micropatterns were ob-
tained (Fig. 1a). Then, SU-8 50 photoresist (NIPPON KAYAKU, Co.,
Ltd) was spin-coated on the sample and aligned photolithography
was conducted to prepare SU-8 walls (Fig. 1b). The obtained Au/SU-
8 molds were treated by O, plasma to obtain hydrophilic surface.
The contact angle test results (using GO dispersion) are shown in
Fig. S5, indicating that the hydrophilia of SU-8 layer is improved by
0, plasma treatment (almost no effect on Au layer), which will
facilitate the injecting process. Afterwards, the inks were injected
into the molds, which were then frozen in seconds at —40 °C. When
the GO/CSs-based interdigital micropatterns were frozen, the solid
portion (GO/CSs) was forced to align along the boundaries of ice
crystals. The 3D networks gradually formed by crosslinking be-
tween GO sheets through m-m interactions [18,27]. During the
freeze-drying process, the ice sublimated from the pores and 3D
GO/CSs aerogel was obtained. Finally, the sample was annealed to
transform GO into rGO, and the rGO/CSs-based MSC was fabricated
(Fig. 1c).

The process and corresponding optical microscope images are
shown in Fig. S6, demonstrating the uniform micropatterns and the
high feasibility of the process. The widths of the fingers and gaps
are approximately 180 um. Fig. 1e is the schematic illustration of
the cross section of the micro-electrode. Au layer and rGO/CSs
networks on Si/SiO are supported by SU-8 molds, possessing a
positive effect on the mechanical stability of the MSC. Fig. 1f pre-
sents the mechanism of ions/electrons transportation: the rGO
aerogel serves as 3D conductive networks and the porous structure
is certain to obtain excellent ions permeation and diffusion ki-
netics; CSs are uniformly dispersed in rGO networks, leading to the
increase of active sites for reversible adsorption/desorption of
electrolyte ions. With the existence of SU-8 walls, the direct
transport of ions between fingers will be hindered [41,42], however,
due to the porous microelectrodes, during charge and discharge,
electrolyte ions can pass through the porous mircoelectrode in the
vertical direction and migrate over the SU-8 walls from one finger
to another finger. In addition, with the bottom Au layer acting as the
current collector for electron transport, the whole MSC is highly
promising to exhibit a relatively low internal resistance. The finally
fabricated MSCs derived from inks with the ratio of GO/CSs at 1:3,
1:6 and 1:9 are named as rGO1/CSs3-MSC, rGO/CSsg-MSC and
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rGO1/CSsg-MSC, respectively. To investigate the effect of freeze-
drying process, naturally dried and freeze-dried MSCs derived
from pure GO ink (denoted as 2D-rGO-MSC and 3D-rGO-MSC,
respectively) are also fabricated.

3.2. Improvement of electrochemical performance for MSCs

The morphologies of 2D-rGO-MSC and 3D-rGO-MSC were
compared to accurately reveal the effect of freeze-drying process,
which are shown in Figs. S7a and b. As indicated in Fig. S7a, the
graphene stacks together and forms a smooth surface, whereas the
graphene shown in Fig. S7b interconnects in three dimension and
forms cross-linked conductive networks. It is definite that the 3D
structure could obtain higher specific surface area, which will lead
to a higher capacitance and more efficient ion diffusion. Calculated
from the CV curves (Fig. S7c), the specific areal capacitances of 2D-
rGO-MSC and 3D-rGO-MSC are 0.26 mFcm™2 and 1.17 mFcm™2,
respectively. Since the concentration of GO in the pristine inks and
injecting amount are facial to control, the areal mass loading of GO
(Marea) can be calculated according to the following equation:

Marea = % (6)
where V (mL) is the injecting amount of the inks (1.8 uL for each
micro-electrode), and ¢ (mg mL™!) represents the utilized con-
centration of GO in the inks (3 mgmL~1). A (cm?) is the foot print
area of each micro-electrode (0.120 cmz). The calculated Mgreq of
GO in MSCs is 0.045mgcm~2 As there is a mass loss after
annealing, thermogravimetric (TG) analysis test was conducted to
determine the mass retention at 300 °C (Fig. S8), and a mass
retention of 56.17% was obtained after the reduction of GO. So the
Marea of TGO was calculated (0.045 mgcm 2 x 56.17%) to be
0.025 mg cm~2. The specific mass capacitance of graphene exhib-
iting in 2D-rGO-MSC and 3D-rGO-MSC can be calculated from the
following equation [43].

4 x Cgrea

7
Marea )

Cmass =

where Cgreq (MF cm™2) represents the specific areal capacitance, of
which, 2D-rGO-MSC and 3D-rGO-MSC are 0.26 and 1.17 mFcm 2,
respectively. Mareq (Mg cm~2) refers to the areal mass loading, both
2D-rGO-MSC and 3D-rGO-MSC are 0.025 mgcm 2. Therefor the
calculated Cpgss of graphene in 2D-rGO-MSC and 3D-rGO-MSC are
41.6 and 187.2Fg~!, respectively. The improvement of electro-
chemical performance can be ascribed to the following reasons: (1)
the restacking of graphene is prevented by freeze-drying process
and 3D micro-electrode with higher surface area was constructed;
(2) the 3D micro-electrode facilitates the permeation of electrolyte
ions and allows much more contact area between electrode and
electrolyte; (3) the graphene scaffolds possess an interlaced porous
structure, which benefits to the diffusion of electrolyte ions during
charge/discharge. The Cy4ss of graphene exhibiting in 3D-rGO-MSC
(187.2Fg™") is comparable with the highest level of previously
reported works [24], including rGO-cellulose paper (120 Fg~1) [25],
laser-scribed 3D graphene (265Fg~!) [44], holey graphene
frameworks (298 Fg~1) [45] and liquid-mediated graphene film
(203 Fg~1) [46]. The considerable capacitance is due to the high
utilization of the active material and abundant oxygen functional
groups remaining on the graphene sheets (can provide pseudo-
capacitance) after annealing at 300 °C.

In consideration of the intrinsic relatively high electrochemical
activity of CSs [39] and their excellent combination with graphene,
CSs were introduced to obtain a unique 3D structure and further

increase the active sites of the micro-electrode. MSCs with different
mass loadings of CSs (rGO1/CSs3-MSC, rGO1/CSsg-MSC and rGO;/
CSsg-MSC, see Experiment section for details) were obtained in
order to detect the effects of CSs participating in the composite
micro-electrodes. As shown in Fig. 2a-f, CSs are uniformly distrib-
uted on the surface of graphene sheets, which indicates the superb
dispersion of CSs in the pristine inks. The cross sectional SEM im-
ages of different MSCs are shown in Fig. S9. In a given space of the
fingers, the micro-electrodes with higher mass loading of CSs are
more compact, which is promising to achieve higher specific areal
capacitance [9]. Furthermore, the CV (at the scan rate of 10mVs™1)
and GCD (at the current density of 0.1 mA cm™2) tests results are
presented in Fig. 2g, h. With the content of CSs increasing, the
response current increases, indicating that the CSs have a signifi-
cant contribution in capacitance. Calculated from the CV curves in
Fig. 2g, the capacitances of rGO/CSs3-MSC, rGO/CSsg-MSC and
rGO1/CSse-MSC are 7.39, 9.99 and 17.01 mF cm ™2, respectively. As
shown in Fig. 2h, the MSC with a higher mass loading of CSs pos-
sesses the longer discharge time (72.5, 101.3 and 173.0s, respec-
tively), which manifests that, the MSC with increased mass loading
of CSs will obtain improved active sites in the micro-electrodes and
lead to a higher capacitance. The areal mass loadings of CSs (Marea)
can be calculated according to equation (6). Where V (mL) for the
injecting amount of the inks is 1.8 uL for each micro-electrode, and
¢ (mg mL™1) represents the utilized concentration of CSs in the inks,
which are 9,18 and 27 mg mL~! for rGO;/CSs3-MSC, rGO1/CSsg-MSC
and rGO1/CSsg-MSC, respectively. A (cm?) is the foot print area of
each microelectrode (0.120 cm?). The calculated areal mass load-
ings of CSs in MSCs are 0.135, 0.271 and 0.406 mg cm™2, respec-
tively. Calculated from Cgreq and Mgreq according to equation (7), the
Cmass of CSs exhibiting in rGO7/CSs3-MSC, rGO1/CSsg-MSC and
rGO1/CSsg-MSC are respectively 184.30, 130.18 and 156.06 Fg~!
(minus the capacitance contribution of rGO), which is comparable
with the result in reference work (282Fg~!) [39]. The approxi-
mation is ascribed to the superior architecture of the interdigital
devices and excellent permeation of electrolyte resulting from the
3D structure of the micro-electrodes and utilization of H;SO4-PVA
electrolyte. The corresponding specific areal capacitances are
plotted in Fig. 2i (at the scan rate of 10 mV s~ 1), it is apparent that
the capacitance of the MSC increases as mass loading of CSs in-
creases. That can be ascribed to this reason: the high-surface-area
CSs provide abundant active sites for adsorption/desorption of
electrolyte ions, and while mass loading of CSs increases, the active
sites increase simultaneously, therefor the MSC with higher mass
loading of CSs exhibits improved capability. Since inks with higher
concentration of CSs exhibit higher viscosity, it is extremely tough
to make the inks flow into the Au/SU-8 molds when the concen-
tration of CSs is more than 27 mg mL~, therefor the mass loading of
CSs at 0.406 mg cm ™2 is the highest level which can be obtained in
this work.

The EIS curves (range from 500 kHz to 0.01 Hz) of 2D-rGO-MSC,
3D-rGO-MSC, rGO4/CSs3-MSC, rGO1/CSsg-MSC and rGO4/CSsg-MSC
are shown in Figs. S10a and b. Judging from the high frequency
region, these five MSCs exhibit comparable equivalent series
resistance (ESR), which suggests that the introduction of CSs has no
obvious impact on the ESR. By comparing the low frequency region,
the slops of freeze-dried MSCs are much higher than that of natu-
rally dried MSC, indicating their faster ions diffusion, which owes to
the 3D structure of their micro-electrodes [7,47—49]. The diffusion
coefficient D of ions in the porous electrode can be calculated ac-
cording to the supplementary equation (1, 2) [50,51]. The linear
fitting between Z' and w~1/2 (v is frequency) is shown in Figs. S10c
and d and the slope in the fitting line represents c. The slope value
of 2D-rGO-MSC (k; =24671) is much higher than others, indicating
its poor diffusion kinetics resulting from the restacking of



Y. Chen et al. / Journal of Materiomics 5 (2019) 303—312 307

Potential (V)

Time (s)

o @

E 030{ —— rGO/CSsyMSC 1.01 — rGoycssymsc| &

b — 1GO,/CSsy MSC —1Goycssemsc| & ] rGO,/CSs,-MSC
E —— 1GO,/CSsyMSC ~0.84 — rGO,/CSs; MSC|  ©

£ 0.15] ¢; K

z = 0.6 sn

e =

Z s g

£ 0.00 £ 041 £ 3

o 13

= £ 02 = GO, /CSs;-MSC

s ® 44

£ -0.15 -

=z 0.01

= Qi

- 00 02 04 06 08 10 0 100 200 300 400 0.1 02 03 0.4

CSs mass loading (mg cm?)

Fig. 2. SEM images of a, d) rGO/CSs3-MSC, b, e) rGO;/CSsg-MSC and c, f) rGO;/CSso-MSC. g) CV curves of rGO1/CSs3-MSC, rGO1/CSsg-MSC and rGO;/CSsg-MSC at the scan rate of
10mV's~! with a potential window from 0 to 1V. h) GCD curves of rGO;/CSs3-MSC, rGO;/CSsg-MSC and rGO;/CSso-MSC at the current density of 0.1 mA cm~2 with a potential
window from 0 to 1V. i) Specific capacitances of MSCs with different mass loadings of CSs.

graphene. Among the freeze-dried MSCs, the slope values of rGO¢/
CSs3-MSC (k3 =452), rGO1/CSsg-MSC (ks =106) and rGO;/CSsg-
MSC (k5 =181) are lower than that of 3D-rGO-MSC (k, =2018),
which indicates that the CSs imbed into the graphene pieces, and
further restrain the restacking of graphene and provide more effi-
cient path for the migration of electrolyte ions.

3.3. Characterization of rGO1/CSso-MSC and further application

The digital camera image of rGO1/CSsg-MSC is shown in Fig. 3a.
The scale of whole MSC is comparable with the human's finger,
which will be suitable for applications in implantable or wearable
devices. Fig. 3b is the cross-sectional SEM image of rGO1/CSsg-
MSC, it can be observed that the SU-8 micropatterns on Si/SiO;
wafer possess an average height of 180 um, which will ensure a
high mass loading of the active materials. As shown in the high
maghnification cross-sectional SEM images (Fig. 3c and inset im-
age), it is obvious that the uniformly distributed CSs and rGO
aerogel interconnect into 3D networks, forming a unique porous
micro-electrode. Fig. 3d, e are low and high magnification SEM
images of the top surface, also indicating its porous characteristic.
Due to the volumetric shrinkage of SU-8 photoresist after
annealing, some cracks are observed. With the existence of Au
current collector, the cracks have no effect on the electron trans-
port. Fig. 3f is the TEM image of rGO1/CSsg9-MSC, it is apparent that
the CS (amorphous part) is half covered by rGO (graphite part),
among which, the covered area is conducive to the migration of
electrons (from rGO to CSs) and uncovered area will be of benefit
to the permeation of electrolyte ions. To investigate the inherent
properties, rGO1/CSsg micro-electrode was characterized by
Raman spectroscopy, XPS and nitrogen adsorption-desorption

measurements. As presented in Fig. 3g, the Raman spectrum of
rG0O1/CSsg micro-electrode exhibits a D band (=1340 cm™ )
together with a relatively narrow G band (=1585cm™!), which
correspond with disordered carbon/defective graphitic structure
and graphitic sp?>-bonded carbon, respectively [39]. The sample
demonstrates a comparable and relatively high Ip/I¢ ratio (1.14),
indicating the amorphous form of carbon [39]. To investigate the
surface composition of rGO1/CSsg micro-electrode, the XPS mea-
surement was conducted (Fig. 3h, i and Fig. S11). As shown in the
inset image of Fig. 3h, the contents of carbon, nitrogen and oxygen
are respectively 81.63%, 3.22% and 15.14%. Originated from CSs
(nitrogen-doped), nitrogen (Fig. 3i) can be divided into four types:
pyridinic N located at 398.2 eV (15.33%), pyrrolic N at 400.6 eV
(49.43%), quaternary N at 401.4eV (3.13%), and pyridine N—O
moieties at 405.2 eV (32.11%) [39]. According to previous reports
[39,52—54], the negatively charged groups pyridinic N and pyr-
rolic N are located at the edges of the carbons, which contribute to
the pseudocapacitance, and the positively charged quaternary N
and pyridine N—O moieties help electron transport in carbon.
Nitrogen adsorption-desorption isotherms are demonstrated in
Fig. S12, indicating its microporous structure. The Brunner-
Emmet-Teller (BET) surface area, micropore surface area and
micropore volume are determined to be 402.88m’g ',
362.43m?g ! and 0.18 cm> g1, respectively.

To investigate the electrochemical performance of rGO;/CSsg-
MSC, CV test was conducted at various scan rates varying from 10 to
100 mVs~! (Fig. 4a) and GCD test was conducted at different cur-
rent densities from 0.1 to 1 mA cm 2 (Fig. S13). It is obvious that, all
of the CV curves in Fig. 4a are rectangular and with the scan rate
increasing, the response current increases with the same multiple,
which further indicates the efficient diffusion of electrolyte ions in
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Fig. 3. a) Digital camera image of rGO;/CSsg-MSC. b, c) Cross sectional SEM images of rGO;/CSsg-MSC. d, e) Top surface SEM images of rGO;/CSsg-MSC. f) TEM image of rGO;/CSsg-
MSC. g, h, i) Raman spectrum, XPS spectrum (the inset image shows the content of C, N and O) and high-resolution N 1s spectrum of rGO;/CSsg-MSC.

the micro-electrode of rGO1/CSsg-MSC. The GCD curves in Fig. S13
display relatively symmetric triangular shapes. At the current
density of 0.1 mAcm~2, the rGO;/CSso-MSC exhibits excellent
coulombic efficiency (94.54%), and the internal resistance calcu-
lated from the IR drop is 0.975 Q. The low internal resistance is
benefited from the existence of current collector (Au layer) and
graphene networks: the Au layer serves the function of highway for
planar electron transport and the graphene networks serve as the
3D conductive framework. Calculated from the CV curves, the
specific areal capacitances of rGO1/CSso-MSC under different scan
rates are shown in Fig. S14, which shows excellent rate perfor-
mance. At the scan rate of 10mV s, the rGO1/CSsg-MSC exhibits a
high specific capacitance of 17.01 mFcm~2, which exceeds many
reported naturally dried graphene-based MSCs, including electro-
chemically exfoliated graphene-based MSCs (5mFcm™2) [16],
scalable fabricated MSCs (0.7 mFcm™2) [15] and scalable, self-
aligned printed MSCs (0.268 mF cm~2) [20], indicating the signifi-
cant effect of freeze-drying process and loading of CSs. At the scan
rate of 500 mV s, the rGO; /CSsg-MSC exhibits 93.1% capacitance
retention even after 10000 cycles, showing excellent cycling per-
formance (Fig. 4b). Calculated from CV curves, at the scan rate of
10mVs~!, the rGO;/CSso-MSC exhibits an energy density of
0.13mWh cm 2 and a power density of 4.72 mW cm 2. Results of
energy density and power density (calculated from different scan
rates) are listed in the Ragone plots (Fig. 4c), which are comparable
with graphene/phosphorene hybrid films [55] and vertically
aligned graphene [56], and higher than those of graphene-based in-
plan MSC [7], cellular graphene-based MSC [57], hydrated GO-
based MSC [3], rGO-based monolithic MSC [58] and sulfur-doped
graphene-based MSC [59].

In most cases, because of their wider voltage windows or higher
capacitance, connecting several MSCs in series, parallel or mixed
combination are more applicative than single MSC employed in
integrated circuits [14,15]. In our work, several MSCs are connected
in series (denoted as 2S, 3S, 4S), parallel (denoted as 2P, 4P) and
mixed combination (denoted as 2P x 2S), the connection types and
their electrochemical test results are shown in Fig. 4d-i. As shown
in Fig. 4d, g, the voltages of 2S, 3S, 4S can reach 2V, 3V, 4V,
respectively and their capacitances deliver 1/2,1/3,1/4 times as that
of single MSC. When the voltage reaches 2 V, the “bank” can power
a LED successfully, which is shown in the inset image of Fig. 4b.
When connected in 2P and 4P, the capacitances are respectively 2
and 4 times as that of single MSC while the voltage remains the
same, which are demonstrated in Fig. 4e, h. To increase both the
voltage and capacitance, every two MSCs are connected in series
and then connected in parallel to form the mixed combination
(2P x 2S). Benefiting from this design, the capacitance of this
combined MSC is increased by 2 times and so does the operating
voltage window, which is apparent in Fig. 4f, i.

4. Conclusions

In summary, the rGO aerogel-based MSC is fabricated by
injecting and freeze-drying processes using environmentally
friendly aqueous GO-based inks. Benefiting from the 3D structure
of the microelectrode, the 3D-rGO-MSC exhibits a higher specific
mass capacitance (187.2Fg~!) comparing with the 2D-rGO-MSC
(41.6 Fg~1). With the further introduction of CSs, the MSCs exhibit
improved electrochemical performance. When the areal mass
loading of CSs reaches 0.406 mgcm 2, the MSC exhibits a high
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Fig. 4. Electrochemical performances of rGO1/CSso-MSC using H,S04-PVA electrolyte. a) CV curves at different scan rates with a potential window from 0 to 1V b) Cycling per-
formance of rGO;/CSso-MSC at the scan rate of 500 mV s~! after 10000 cycles. Inset image shows a LED powered by four series-connected MSCs. c) Ragone plots of specific areal
energy density and power density of rGO;/CSso-MSC and other reported MSCs. d-i) Schematic illustration of 4 MSCs connected in series, parallel and mixed combinations. CV curves
at the scan rate of 10mV s~ and GCD curves at the current density of 0.1 mA cm ™2 for d, g) 1 cell, 2S, 3S, 4S e, h) 1 cell, 2P, 4P and f, i) 1 cell, 2P x 2.

specific areal capacitance of 17.01 mFcm™2 at the scan rate of
10mVs~!, which is ascribed to the sufficient active sites for
adsorption/desorption of electrolyte ions provided by CSs. The
fabricated rGO1/CSsg-MSC also has a remarkable long-term cycling
performance: with 93.14% capacitance retention after 10,000 cyclic
voltammetry cycles. The utilized inks are stable, safe, nontoxic and
low-cost, the proposed microfabrication process is facile and
controllable, and this novel all carbon-based MSC with 3D micro-
electrode exhibits outstanding performance, which will pave the
way for future investigation of graphene-based inks applied in
high-performance micro-devices/systems.
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