Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Small Micro

Supporting Information

for Small, DOI: 10.1002/smll.201902141

Langmuir–Blodgett Nanowire Devices for In Situ Probing of Zinc-Ion Batteries

Qin Liu, Zhimeng Hao, Xiaobin Liao, Xuelei Pan, Shuxuan Li, Lin Xu, and Liqiang Mai*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

Langmuir-Blodgett Nanowire Devices for In-Situ Probing of Zinc-Ion Batteries

Qin Liu, Zhimeng Hao, Xiaobin Liao, Xuelei Pan, Shuxuan Li, Lin Xu* and Liqiang Mai

Figure S1. Schematic illustration of the fabrication processes of pyrolytic carbon current collectors.

Figure S2. Characterization of MnO₂ nanowires. a) XRD pattern, b) Raman spectroscopy, c) SEM, d) EDS.

Figure S3. The ultra violet photoelectron spectroscopy of different nanowire/current collector interfaces.

Figure S4. Characterization of LBNW film. a) I-V curves of aligned NWs and random NWs with pyrolytic carbon current collector, respectively. b) CV curves of aligned NWs and random NWs with pyrolytic carbon current collectors in $ZnSO_4$ electrolyte with pre-added Mn^{2+} .

Figure S5. Measurement equipment layout with the three-dimensional view: Electrochemical workstation and probe station combined system.

Figure S6. Cycling performance of MnO_2 LBNWs in $ZnSO_4$ electrolyte and $ZnSO_4$ electrolyte with pre-added Mn^{2+} , respectively.

Figure S7. SEM image of MnO₂ nanowires after 100 cycles.

Figure S8. High-resolution XPS characterization of LBNWs at different states. a) Zn 2p, b) O 1s, c) Mn 2p XPS spectroscopy for MnO₂ electrode materials at different states: black, initial state; red, after 100 galvanostatic charging at 1 μ A cm⁻² in ZnSO₄ electrolyte; blue, after 100 galvanostatic charging at 1 μ A cm⁻² in ZnSO₄ electrolyte with MnSO₄ additive.

Figure S9. Raman spectroscopy evolution of MnO₂ LNNWs at different charge/discharge states. Red, initial state; dark, after 10th galvanostatic charging; pink, after 20th galvanostatic charging; navy, after 50th galvanostatic charging; yellow, after 375th galvanostatic charging. **Table 1.** Zn, Mn, O element ratio after 100 cycles.

Element	Ratio
Oxygen	33.5
Manganese	43.6
Zinc	23.3