Supporting Information

Aqueous Zn//Zn(CF₃SO₃)₂//Na₃V₂(PO₄)₃ Batteries with Simultaneous Zn²⁺/Na⁺ Intercalation/De-intercalation

Ping Hu,^a Ting Zhu,^a Xuanpeng Wang,^a Xufeng Zhou,^b Xiujuan Wei,^a Xuhui Yao,^a Wen Luo,^a Changwei Shi,^a Kwadwo Asare Owusu,^a Liang Zhou,^a* Liqiang Mai^a* ^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

^b Ningbo Institute of Materials, Chinese Academy of Sciences, Ningbo 315000, China

Email: mlq518@whut.edu.cn (L. Q. Mai); liangzhou@whut.edu.cn (L. Zhou)

Fig. S1. The capacity contributions from Zn^{2+}/Na^+ intercalation/de-intercalation at 50 mA g⁻¹.

Fig. S2. Charge/discharge curves of NVP@rGO at different current densities.

Fig. S3. The GITT test for NVP@rGO microspheres at a current density of 16 mA g^{-1} in a charge/discharge process.

On the basis of Fick's second law, the diffusion coefficient of Na^+ and Zn^{2+} could be calculated using the equation below

$$D = \frac{4}{\pi} \left(\frac{m_a V_M}{M_a S} \right)^2 \left(\frac{\Delta E_s}{\tau \left(\frac{dE_\tau}{d\sqrt{\tau}} \right)} \right)^2$$

where m_a and M_a are the mass and the molecular weight. V_M is the molar volume of the compound. S represents the active surface area. τ is the time period of the current pulse. $dE\tau/d(\tau^{1/2})$ is the derivative of the voltage change during the current pulse with respect to the charge or discharge time τ . $\Delta E\tau$ is the total change of cell voltage during a constant current pulse, and ΔEs is the change of the steady-state voltage at the end of the relaxation period over a single galvanic static titration.

Fig. S4. Nyquist plots of NVP@rGO.

Fig. S5. XPS survey spectra of the electrodes obtained at different states (original, charged, and discharged states). The fluorine comes from the PVDF binder.

Fig. S6. Cycling performance (a) and charge/discharge curves (b) of $Na_xV_2(PO_4)_3@rGO$ (prepared by charging NVP@rGO to 1.8 V and then washed with deionized water).

Fig. S7. Charge/discharge curves of NVP@rGO and Na_xV₂(PO₄)₃@rGO (prepared by

charging NVP@rGO to 1.8 V and then washed with deionized water).

Fig. S8. Ragone plot comparing the electrochemical performance of the Zn//Zn(CF₃SO₃)₂//Na₃V₂(PO₄)₃ battery with other recently reported aqueous metal-ion batteries. The black dots represent data from aqueous Li-ion batteries of LiMn₂O₄//TiO₂,^[1,2] LiMn₂O₄//AC,^[3] LiNi_{0.5}Mn_{1.5}O₂//Mo₆S₈;^[4] the green dots Na-ion batteries represent data from aqueous of Na0.66[Mn0.66Ti0.34]O2//NaTi2(PO4)3/C,^[5] NaMnO₂//NaTi₂(PO₄)₃,^[6] Na₃V₂(PO₄)₃//NaTi₂(PO₄)₃;^[7] the blue dots represent data from aqueous Zn-ion batteries of Zn//LiV₃O₈,^[8] Zn//Na₃V₂(PO₄)₃,^[9] Zn//VS₂,^[10] Zn//Na₃V₂(PO₄)₂F₃.^[11]

References

- [1] D. Bin, Y. P. Wen, Y. G. Wang, Y. Y. Xia, J. Energy Chem. 27 (2018) 1521-1535.
- [2] L. M. Suo, O. Borodin, W. Sun, X. L. Fan, C. Y. Yang, F. Wang, T. Gao, Z. H. Ma, M. Schroeder, A. von Cresce, S. M. Russell, M. Armand, A. Angell, K. Xu, C. S. Wang, *Angew. Chem. Int. Ed.* 55 (2016) 7136-7141.
- [3] Y. G. Wang, Y. Y. Xia, J. Electrochem. Soc. 153 (2006) A450-A454.
- [4] F. Wang, L. M. Suo, Y. J. Liang, C. Y. Yang, F. D. Han, T. Gao, W. Sun, C. S. Wang, Adv. Energy Mater. 7 (2017) 1600922.
- [5] Y. S. Wang, L. Q. Mu, J. Liu, Z. Z. Yang, X. Q. Yu, L. Gu, Y. S. Hu, H. Li, X. Q. Yang, L. Q. Chen, X. J. Huang, *Adv. Energy Mater.* 5 (2015) 1501005.
- [6] Z. G. Hou, X. N. Li, J. W. Liang, Y. C. Zhu, Y. T. Qian, J. Mater. Chem. A 3 (2015)

1400-1404.

- [7] H. Zhang, B. S. Qin, J. Han, S. Passerini, ACS Energy Lett. 3 (2018) 1769-1770.
- [8] M. H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam, D. T. Pham, J. Jo, S. Kim, J.
 P. Baboo, Z. L. Xiu, K. S. Lee, Y. K. Sun, J. Kim, *Chem. Mater.* 29 (2017) 1684-1694.
- [9] G. L. Li, Z. Yang, Y. Jiang, C. H. Jin, W. Huang, X. Ding, Y. H. Huang, Nano Energy 25 (2015) 211-217.
- [10] P. He, M. Y. Yan, G. B. Zhang, R. M. Sun, L. N. Chen, Q. Y. An, L. Q. Mai, Adv. Energy Mater. 7 (2017) 1601920.
- [11] W. Li, K. L. Wang, S. J. Cheng, K. Jiang, *Energy Storage Mater.* 15 (2018) 14-21.