Electronic Supplementary Information

Ultrafine SiO_x/C Nanospheres and Their Pomegranate-Like Assemblies for High-Performance Lithium Storage

Qiang Yu,^a Peipei Ge,^b Zhenhui Liu,^a Ming Xu,^a Wei Yang,^a Liang Zhou,^{*a} Dongyuan Zhao,^a and Liqiang Mai^{*a}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China

^b College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

E-mail: liangzhou@whut.edu.cn; mlq518@whut.edu.cn

Fig. S1 Digital photo of the ultrafine SiO_2 colloid solution obtained by the hydrolysis and condensation of TPOS in aqueous 3-aminophenol/CTAB/HMTA solution for 10 min.

Fig. S2 SEM image of SiO₂/resin-2.

Fig. S3 HREM images of $SiO_x/C-2$ (a – b).

Fig. S4 SEM images of $SiO_2/resin-1(a)$ and $SiO_x/C-1$ (b).

Fig. S5 SEM images of SiO₂/resin-3 (a) and SiO_x/C-3 (b), EDS elemental mappings of SiO_x/C-3 (c – e).

Fig. S6 High resolution Si 2p spectrum of SiO_x/C-2. The sample is subjected to Ar^+ etching before XPS measurement. The etching depth is ~20 nm.

Fig. S7. FT-IR spectrum of SiO₂/resin nanospheres.

The functional groups on SiO₂/resin nanospheres are analyzed by FT-IR spectrum (Fig. S7), which clearly shows the stretching/deformation vibrations of -OH (\sim 3388 cm⁻¹), N-H (\sim 1622 cm⁻¹), C=C (\sim 1476 and 1506 cm⁻¹), C-N (\sim 1293 cm⁻¹), Si-O (\sim 1095 cm⁻¹), and C-O (\sim 1208 cm⁻¹).

Fig. S8 Cyclic voltammetry profiles of $SiO_x/C-2$ measured in the potential range of 0.01 - 3.0 V with a scan rate of 0.1 mV s⁻¹.

Fig. S9 Cycling performance of hollow carbon nanospheres at 500 mA g^{-1} . The hollow carbon spheres are prepared by etching SiO_x/C-2 nanospheres with HF.

Fig. S10 Nyquist plots of the SiO_x/C samples at 25 °C.

Fig. S11 SEM (a, b) and TEM (c) images of pomegranate-like SiO₂/resin-2.

Fig. S12 N_2 adsorption/desorption isotherm of the pomegranate-like SiO_x/C-2.

Fig. S13 EDS elemental mappings of C, N, O and Si (a-e) of pomegranate-like SiO_x/C-2 microspheres.

Sample	3-aminophenol (g)	HMTA (g)	H ₂ O (mL)	CTAB (g)	TPOS (mL)
SiO _x /C-1	0.2	0.255	20	0.15	0.9
SiO _x /C-2	0.2	0.255	20	0.15	1.2
$SiO_x/C-3$	0.2	0.255	20	0.15	1.5

 Table S1. Synthesis parameters of SiO_x/C nanospheres.

Table S2. The specific surface area, total pore volume, and pore size of the SiO_x/C nanocomposites.

Sample	BET surface area (m ² g ⁻¹)	Pore Volume (cm ³ g ⁻¹)
SiO _x /C-1	232.8	0.21
SiO _x /C-2	475.7	0.37
SiO _x /C-3	361.3	0.30
pomegranate-like SiO _x /C-2	404.3	0.47

Sample	Reversible capacity	Cycle number	Ref	
SiO _x /C-2	829 mAh g ⁻¹ at 1.0 A ⁻¹	1000	This work	
pomegranate-like SiO _x /C-2	808 mAh g ⁻¹ at 0.5 A g ⁻¹	200		
SiO_x/SiO_y	750 mAh g ⁻¹ at 0.5 A g ⁻¹	150	1	
SiO _x /C	675 mAh g ⁻¹ at 0.1 A g ⁻¹	100	2	
SiO ₂ /C hollow sphere	910 mAh g ⁻¹ at 0.2 A g ⁻¹	150	3	
SiO ₂	700 mAh g ⁻¹ at 0.2 A g ⁻¹	250	4	
SiO _{0.37} /graphene	1300 mAh g ⁻¹ at 0.3 A g ⁻¹	50	5	
C@Si-SiO ₂	920 mAh g ⁻¹ at 0.1 A g ⁻¹	500	6	
SiO ₂ /C	620 mAh g ⁻¹ at 0.1 A g ⁻¹	300	7	
SiO ₂ /N-doped C	820 mAh g ⁻¹ at 0.2 A g ⁻¹	20	8	
SiO _x /C@RGO	1284 mAh g ⁻¹ at 0.1 A g ⁻¹	100	9	
SiO_x/C nanowire	623 mAh g ⁻¹ at 0.5 A g ⁻¹	150	10	
SiO ₂ @C	441 mAh g ⁻¹ at 0.5 A g ⁻¹	500	11	
Si/SiO ₂ /C nanofiber	405 mAh g ⁻¹ at 0.5 A g ⁻¹	1000	12	
SiO ₂ multi-shelled hollow sphere	750 mAh g ⁻¹ at 0.1 A g ⁻¹	550	13	
porous SiO ₂ /C	611 mAh g ⁻¹ at 0.2 A g ⁻¹	200	14	

Table S3. Comparison of the lithium storage performances of $SiO_x/C-2$ with literature values.

References

- 1. L. Zhang, J. Deng, L. Liu, W. Si, S. Oswald, L. Xi, M. Kundu, G. Ma, T. Gemming, S. Baunack, F. Ding, C. Yan and O. G. Schmidt, Adv. Mater., 2014, 26, 4527-4532.
- W. Wu, J. Shi, Y. Liang, F. Liu, Y. Peng and H. Yang, Phys. Chem. Chem. Phys., 2015, 17, 13451-13456. 2.
- 3. X. Cao, X. Chuan, S. Li, D. Huang and G. Cao, Part. Part. Syst. Char., 2016, 33, 110-117.
- 4. W.-S. Chang, C.-M. Park, J.-H. Kim, Y.-U. Kim, G. Jeong and H.-J. Sohn, Energy & Environ. Sci., 2012, 5,
 - 6895
- 5. D. T. Nguyen, C. C. Nguyen, J. S. Kim, J. Y. Kim and S. W. Song, ACS Appl. Mater. Interfaces, 2013, 5, 11234-11239.
- 6. Q. He, C. Xu, J. Luo, W. Wu and J. Shi, Chem. Commun., 2014, 50, 13944-13947.
- 7. M. Li, Y. Yu, J. Li, B. Chen, X. Wu, Y. Tian and P. Chen, J. Mater. Chem. A, 2015, 3, 1476-1482.
- 8. Y. Liang, L. Cai, L. Chen, X. Lin, R. Fu, M. Zhang and D. Wu, Nanoscale, 2015, 7, 3971-3975.
- X. Cao, X. Chuan, R. C. Massé, D. Huang, S. Li and G. Cao, J. Mater. Chem. A, 2015, 3, 22739-22749.
 Z. Li, Q. He, L. He, P. Hu, W. Li, H. Yan, X. Peng, C. Huang and L. Mai, J. Mater. Chem. A, 2017, 5, 4183-4189.
- 11. W. An, J. Fu, J. Su, L. Wang, X. Peng, K. Wu, Q. Chen, Y. Bi, B. Gao and X. Zhang, J. Power Sources, 2017, 345, 227-236.
- 12. M. Dirican, O. Yildiz, Y. Lu, X. Fang, H. Jiang, H. Kizil and X. Zhang, Electrochim. Acta., 2015, 169, 52-60.
- 13. X. Ma, Z. Wei, H. Han, X. Wang, K. Cui and L. Yang, Chem. Eng. J., 2017, 323, 252-259.
- 14. Z. Qiang, X. Liu, F. Zou, K. A. Cavicchi, Y. Zhu and B. D. Vogt, J. Phys. Chem. C, 2017, 121, 16702-16709.