Supporting Information

Three-Dimensional Carbon Network Confined Antimony Nanoparticles Anode for High-Capacity K-Ion Batteries

Chunhua Han^a, Kang Han^a, Xuanpeng Wang^a, Chenyang Wang^a, Qi Li^a, Jiashen Meng^a, Xiaoming Xu^a, Qiu He^a, Wen Luo^a, Liming Wu^a and Liqiang Mai^a*

a. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Email: mlq518@whut.edu.cn

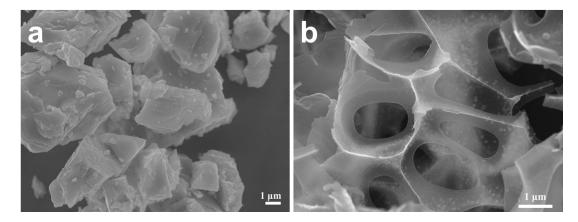


Fig. S1. SEM images of (a) commercial Sb and (b) 3D SbNPs@C.

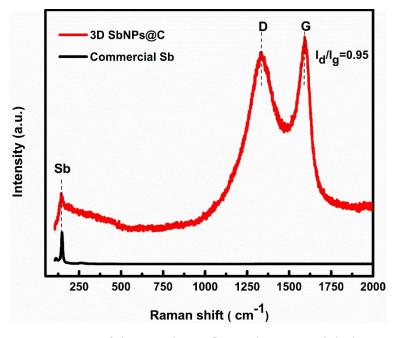
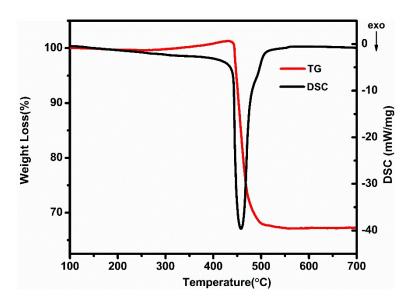
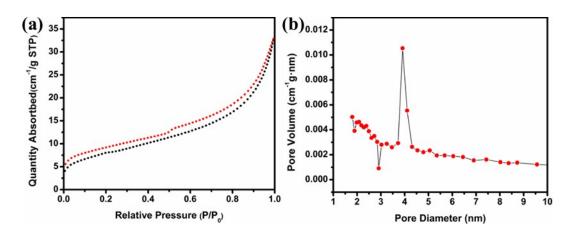
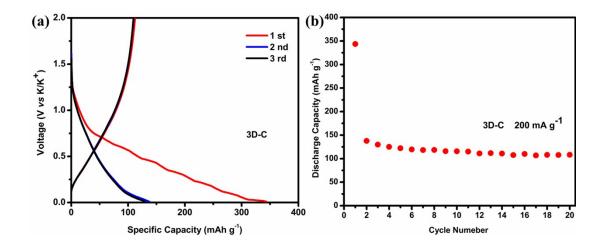
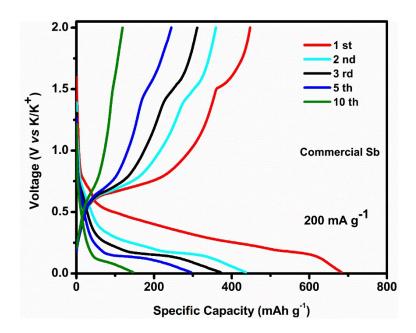
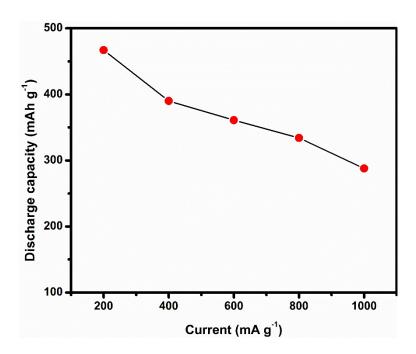


Fig. S2. Raman spectra of the 3D SbNPs@C and commercial Sb, respectively.


Fig. S3. TGA analysis of 3D SbNPs@C


Fig.S4. (a) N_2 adsorption/desorption isotherm of 3D SbNPs@C; (b) pore size distribution of 3D SbNPs@C.

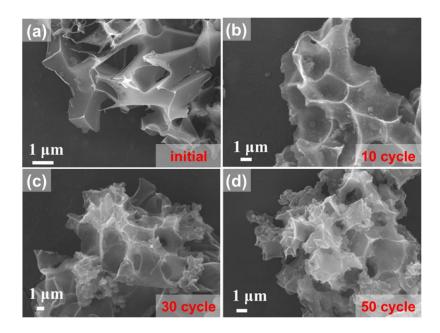

Fig.S5. (a) Representative charge-discharge curves of 3D-C electrode at a specific current of 200 mA g⁻¹ (b) Cycle performance of 3D-C electrode at a specific current of 200 mA g⁻¹.

Fig. S6. Representative charge-discharge curves of commercial Sb electrode at a specific current of 200 mA g^{-1}

Fig. S7. Comparison of the specific discharge capacity of the electrodes at different specific currents.

Fig.S8. SEM images of 3D SbNPs@C before cycling and after 10, 30 and 50cycling, respectively.

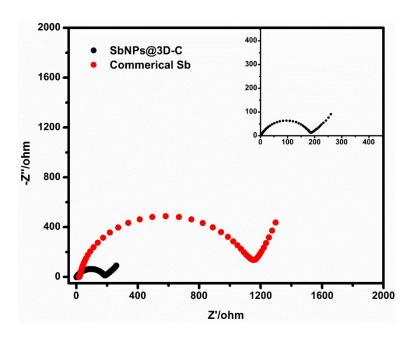


Fig. S9. Nyquist plot of the 3D SbNPs@C and commercial Sb electrode, respectively.

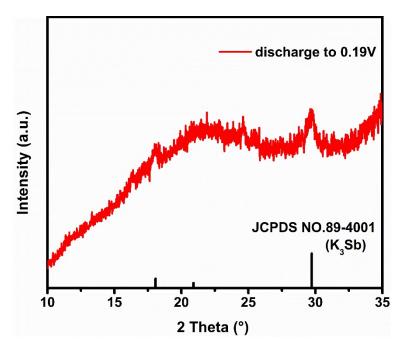


Fig. S10. XRD pattern of 3D SbNPs@C electrode when discharge to 0.19 V.

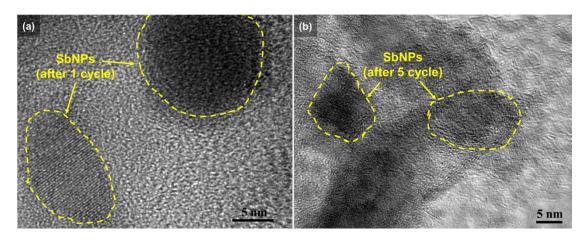


Fig.S11. TEM images of 3D SbNPs@C before cycling and after 5 cycling, respectively.

Table.S1. Electrochemical performance comparison of various K-ion anodes.

Alloy-based anode materials	Current density (mA g ⁻¹)	Reversible capacity (mA h g ⁻¹)	Voltage Range (V)	Reference
SnS ₂ -rGO	25	350	0.01-2	Chem. Commun., 2017,53, 8272- 8275
Sn/C	25	150	0.01-2	Chem. Commun., 2016,52, 9279- 9282
Sb/C composites		250	0.5-1.5	ACS Appl. Mater. Interfaces 7,47,26158-26166
Sn ₄ P ₃ /C	50	384	0.01-2	J. Am. Chem. Soc. 139, 9, 3316-3319
MIL-125(Ti)	50	155	0.01-3	Chem. Commun., 2017,53, 8360- 8363
3D SbNPs@C	200	478	0.01-2	
	400	390	0.01-2	This work
	1000	288	0.01-2	