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Figure S1 XRD pattern of Bi,S; sheets.
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Figure S2 High resolution XPS spectra of (a) C Is and (b) O Is of BS-BO
heterostructures. The C 1s spectrum can be fitted into three peaks at 284.8, 286.2 and
288.8 ¢V, which correspond to the binding energies of C—C, C—N and C=0,
respectively. The O 1s XPS spectrum can be fitted by three peaks at binding energies
of 533.1, 531.2 and 529.8 eV, which can be ascribed to adsorbed H,O (OH,0), C-0O
and Bi—0, respectively. 5 These results suggest the existence of other components

such as CTAB and H,0O species adsorbed on the surface of BS-BO sample.



Figure S3 SEM images of Bi,0; sheets at low (a) and high (b) magnifications.

Figure S4 SEM images of Bi,S; sheets at low (a) and high (b) magnifications.



Table S1. CHNS elemental analysis results of BS-BO heterostructured sheets.
Measurements were conducted twice times to eliminate deviation. The average mass

percentage of sulfur element in BS-BO is determined to be 14.83 wt%.

Mass S(%)
Sample N(%) C(%) H®%) S(%)
(mg) Average

54150 025 448 0.382 14.933
BS-BO sheets 14.83 wt%
49170 0.26 461 0417 14725
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Figure S5 Cyclic voltammograms for the first three cycles of BS-BO electrode in

SIBs at a scan rate of 0.1 mV s™'.
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Figure S6 Cyclic voltammograms for the first three cycles of Bi,Os electrode in
SIBs at a scan rate of 0.1 mV s™'. During the sodiation process, a weak peak located
at 0.61 V and a broad intense peak at 0.27 V are observed. And these two peaks can
be attributed to the reduction process of Bi,O3 to Bi, Bi and Na alloying process,
respectively. During de-sodiation process, four anodic peaks at 0.61, 0.78, 1.81 and
2.48 V can be detected. The major anodic peaks are determined to locate at 0.61 V
and 0.78 V. The CV results are in consistent with previous Bi,O; based SIBs

reports.[s'z]
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Figure S7 Cyclic voltammograms for the first three cycles of Bi,Ss electrode in SIBs
at a scan rate of 0.1 mV s”'. Upon sodiation, three weak peaks at 1.49 V, 0.64 V and
0.33 V can be detected. The peaks at 1.49 V and 0.64 V may be ascribed to Bi,Ss
conversion process, and a sharp peak at 0.33 V are probably due to the alloying of Bi
and Na. Upon de-sodiation, the Na3Bi is de-alloyed into Bi and it is characterized by
two sharp peaks at 0.62 V and 0.79 V. And the Bi might not fully recovers to Bi,Ss

[S-3, 54

in our SIBs, Jas evidenced by a weak peak at 1.84 V.
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Figure S8 The typical charge/discharge profiles of Bi,S; sheets at the current density

of 100 mA g for the initial three cycles.
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Figure S9 The typical charge/discharge profiles of Bi,0Os sheets at the current

density of 100 mA g for the initial three cycles.
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Figure S10 Nyquist plots of electrodes containing BS-BO, Bi,S; sheets and Bi,03

sheets. The equivalent circuit is inset.
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