Supporting Information

Heterostructured Bi₂S₃-Bi₂O₃ Nanosheets with a Built-In Electric Field for Improved Sodium Storage

Wen Luo, ^{a,b†} Feng Li,^{a†} Qidong Li,^a Xuanpeng Wang,^a Wei Yang,^a Liang Zhou^a and Liqiang Mai^{a,c*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and

Processing, Wuhan University of Technology, Wuhan 430070, P. R. China

^b Laboratory of Chemistry and Physics: Multiscale Approach to Complex

Environments (LCP-A2MC), Institute of Jean Barriol, University of Lorraine, Metz

57070, France

^c Department of Chemistry, University of California, Berkeley, California 94720,

United States

[†] These authors contributed equally to this work.

*Corresponding author(s):

Liqiang Mai: <u>mlq518@whut.edu.cn</u>

Figure S1 XRD pattern of Bi_2S_3 sheets.

Figure S2 High resolution XPS spectra of (a) C 1s and (b) O 1s of BS-BO heterostructures. The C 1s spectrum can be fitted into three peaks at 284.8, 286.2 and 288.8 eV, which correspond to the binding energies of C–C, C–N and C=O, respectively. The O 1s XPS spectrum can be fitted by three peaks at binding energies of 533.1, 531.2 and 529.8 eV, which can be ascribed to adsorbed H₂O (OH₂O), C–O and Bi–O, respectively. ^[S-1] These results suggest the existence of other components such as CTAB and H₂O species adsorbed on the surface of BS-BO sample.

Figure S3 SEM images of Bi_2O_3 sheets at low (a) and high (b) magnifications.

Figure S4 SEM images of Bi_2S_3 sheets at low (a) and high (b) magnifications.

Table S1	. CHNS	elemental	analysis	results	of	BS-BO	heterostructu	red	sheets.
Measurem	nents were	e conducted	l twice tin	nes to e	limi	nate dev	iation. The av	verag	ge mass
percentag	e of sulfu	r element ir	BS-BO	is detern	nine	d to be 1	4.83 <i>wt</i> %.		

Sl.	Mass	N I(0/)	C(%)	H(%)	S(%)	S(%)
Sample	(mg)	IN(%)				Average
	5.4150	0.25	4.48	0.382	14.933	14.92 (0/
BS-BO sheets	4.9170	0.26	4.61	0.417	14.725	14.83 wt%

Figure S5 Cyclic voltammograms for the first three cycles of BS-BO electrode in SIBs at a scan rate of 0.1 mV s^{-1} .

Figure S6 Cyclic voltammograms for the first three cycles of Bi_2O_3 electrode in SIBs at a scan rate of 0.1 mV s⁻¹. During the sodiation process, a weak peak located at 0.61 V and a broad intense peak at 0.27 V are observed. And these two peaks can be attributed to the reduction process of Bi_2O_3 to Bi, Bi and Na alloying process, respectively. During de-sodiation process, four anodic peaks at 0.61, 0.78, 1.81 and 2.48 V can be detected. The major anodic peaks are determined to locate at 0.61 V and 0.78 V. The CV results are in consistent with previous Bi_2O_3 based SIBs reports.^[S-2]

Figure S7 Cyclic voltammograms for the first three cycles of Bi_2S_3 electrode in SIBs at a scan rate of 0.1 mV s⁻¹. Upon sodiation, three weak peaks at 1.49 V, 0.64 V and 0.33 V can be detected. The peaks at 1.49 V and 0.64 V may be ascribed to Bi_2S_3 conversion process, and a sharp peak at 0.33 V are probably due to the alloying of Bi and Na. Upon de-sodiation, the Na₃Bi is de-alloyed into Bi and it is characterized by two sharp peaks at 0.62 V and 0.79 V. And the Bi might not fully recovers to Bi_2S_3 in our SIBs, ^[S-3, S-4] as evidenced by a weak peak at 1.84 V.

Figure S8 The typical charge/discharge profiles of Bi_2S_3 sheets at the current density of 100 mA g⁻¹ for the initial three cycles.

Figure S9 The typical charge/discharge profiles of Bi_2O_3 sheets at the current density of 100 mA g⁻¹ for the initial three cycles.

Figure S10 Nyquist plots of electrodes containing BS-BO, Bi_2S_3 sheets and Bi_2O_3 sheets. The equivalent circuit is inset.

References in Supporting Information:

[S-1] Kayaci, F.; Vempati, S.; Donmez, I.; Biyikliab, N.; Uyar, T. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. *Nanoscale* **2014**, *6* (17), 10224–10234.

[S-2] Kim, M. K.; Yu, S. H.; Jin, A.; Kim, J.; Ko, I. H.; Lee, K. S.; Mun, J.; Sung, Y.
E. Bismuth oxide as a high capacity anode material for sodium-ion batteries. *Chem. Commun.* 2016, *52* (79), 11775–11778.

[S-3] Yang, W. L.; Wang, H.; Liu, T. T.; Gao, L. J. A Bi₂S₃@ CNT nanocomposite as anode material for sodium ion batteries. *Mater. Lett.* **2016**, *167*, 102–105.

[S-4] Sun, W. P.; Rui, X. H.; Zhang, D.; Jiang, Y. Z.; Sun, Z. Q.; Liu, H. K.; Dou, S.
X. Bismuth sulfide: A high-capacity anode for sodium-ion batteries. *J. Power Sources* 2016, *309*, 135–140.